Fractional-order QFT Controllers for unstable plants based on Automatic Loop Shaping

被引:0
|
作者
Meng, Li [1 ,2 ]
Diao, Fen [2 ]
机构
[1] Northeastern Univ, Dept Informat Sci & Engn, Shenyang 110004, Peoples R China
[2] Shenyang Univ, Dept Informat Engn, Shenyang 110044, Peoples R China
来源
PROCEEDINGS OF THE 10TH WORLD CONGRESS ON INTELLIGENT CONTROL AND AUTOMATION (WCICA 2012) | 2012年
关键词
Fractional Order Control; Quantitative Feedback Theory; Non-minimum Phase Plant; Automatic Loop Shaping; FEEDBACK-SYSTEMS;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper presents the design of a robust fractional order controller for unstable plants with only one unstable pole based on quantitative feedback theory (QFT) using Particle Swarm Optimization (PSO). In this work, a fractionalorder compensator, with a flexible controller structure, is introduced into the QFT design to give a better approximation of optimum open loop in Nichols. The fractional order controller is designed for not only minimum phase system but also uncertain non-minimum phase and unstable plants in QFT. It has been demonstrated that the
引用
收藏
页码:2148 / 2153
页数:6
相关论文
共 50 条
  • [21] Extending the limits of stabilizability of systems with feedback delay via fractional-order PD controllers
    Balogh, Tamas
    Insperger, Tamas
    IFAC PAPERSONLINE, 2018, 51 (14): : 265 - 270
  • [22] Embedded adaptive fractional-order sliding mode control based on TSK fuzzy system for nonlinear fractional-order systems
    Esraa Mostafa
    Osama Elshazly
    Mohammad El-Bardini
    Ahmad M. El-Nagar
    Soft Computing, 2023, 27 : 15463 - 15477
  • [23] Embedded adaptive fractional-order sliding mode control based on TSK fuzzy system for nonlinear fractional-order systems
    Mostafa, Esraa
    Elshazly, Osama
    El-Bardini, Mohammad
    El-Nagar, Ahmad M. M.
    SOFT COMPUTING, 2023, 27 (21) : 15463 - 15477
  • [24] A Fundamental Study of Loop Shaping on H∞ Control Designs by Fractional Order Calculus
    Ikeda, Fujio
    Toyama, Shigehiro
    2008 PROCEEDINGS OF SICE ANNUAL CONFERENCE, VOLS 1-7, 2008, : 2275 - +
  • [25] Optimal and simultaneous synthesis of fractional order QFT controllers and prefilters for non-minimum phase hydro power systems
    Katal, Nitish
    Verma, Pankaj
    Mahapatro, Soumya Ranjan
    ENGINEERING RESEARCH EXPRESS, 2024, 6 (04):
  • [26] On the adoption of a fractional-order sliding surface for the robust control of integer-order LTI plants
    Corradini, Maria Letizia
    Giambo, Roberto
    Pettinari, Silvia
    AUTOMATICA, 2015, 51 : 364 - 371
  • [27] Extending the admissible control-loop delays for the inverted pendulum by fractional-order proportional-derivative controller
    Balogh, Tamas
    Insperger, Tamas
    JOURNAL OF VIBRATION AND CONTROL, 2024, 30 (11-12) : 2596 - 2604
  • [28] A new fractional-order sliding mode controller for the cruise control system of automatic vehicles
    Sheykhi S.
    Gholizade-Narm H.
    International Journal of Vehicle Autonomous Systems, 2023, 16 (2-4) : 127 - 142
  • [29] Fractional-order controllers for stick-slip vibration mitigation in oil well drill-strings
    Derbal, Massinissa
    Gharib, Mohamed
    Refaat, Shady S.
    Palazzolo, Alan
    Sassi, Sadok
    JOURNAL OF LOW FREQUENCY NOISE VIBRATION AND ACTIVE CONTROL, 2021, 40 (03) : 1571 - 1584
  • [30] Direct Synthesis of Fractional-Order Controllers Using Only Two Design Equations with Robustness to Parametric Uncertainties
    Muniz-Montero, Carlos
    Munoz-Pacheco, Jesus M.
    Sanchez-Gaspariano, Luis A.
    Sanchez-Lopez, Carlos
    Molinar-Solis, Jesus E.
    Chavez-Portillo, Melissa
    FRACTAL AND FRACTIONAL, 2025, 9 (02)