Fe-C nanograined alloys obtained by high-pressure torsion: Structure and magnetic properties

被引:91
作者
Straumal, B. B. [1 ,2 ]
Mazilkin, A. A. [1 ]
Protasova, S. G. [1 ]
Dobatkin, S. V. [3 ]
Rodin, A. O. [3 ,4 ]
Baretzky, B. [2 ]
Goll, D. [2 ]
Schuetz, G. [2 ]
机构
[1] Russian Acad Sci, Inst Solid State Phys, Chernogolovka 142432, Russia
[2] Max Planck Inst Met Res, D-70569 Stuttgart, Germany
[3] Russian Acad Sci, AA Baikov Inst Met & Mat Sci, Moscow 119991, Russia
[4] Technol Univ, Moscow State Inst Steel & Alloys, Moscow 119991, Russia
来源
MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING | 2009年 / 503卷 / 1-2期
关键词
High-pressure torsion; Nanograined structure; Fe-C alloys; Light microscopy; Electron microscopy; Mossbauer spectroscopy; Magnetic properties; PHASE-COMPOSITION; PEARLITIC STEEL; AL-ZN; CARBON; TRANSFORMATION; DEFORMATION; DISSOLUTION; MOSSBAUER; CEMENTITE; CARBIDES;
D O I
10.1016/j.msea.2008.03.052
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
The microstructure, phase composition, Mossbauer spectra and magnetic properties of nine binary Fe-C alloys with carbon concentrations between 0.05 and 1.7 wt.% were studied in the as-cast state, after a long annealing at 725 degrees C and after high-pressure torsion (HPT) at ambient temperature and 5 GPa with five anvil rotations (shear strain about 6). The grain size after HPT was in the nanometer range. Only Fe3C (cementite) and alpha-Fe remain in the alloys after HPT. It was also shown that the less stable Hagg carbide (Fe5C2) and retained austenite disappear, and phase composition closely approaches the equilibrium corresponding to the HPT temperature and pressure. Measurements of saturation magnetization and Mossbauer effect reveal that the amount of cementite decreases after HPT. The reason for partial cementite dissolution is the formation of the carbon-rich segregation layers in the ferrite grain boundaries. (c) 2008 Published by Elsevier B.V.
引用
收藏
页码:185 / 189
页数:5
相关论文
共 30 条
[1]   Tailoring of paramagnetic (structurally ordered) nanometric grains separated by ferromagnetic (structurally disordered) grain boundaries:: Isolating grain-boundary magnetic effects -: art. no. 052402 [J].
Amils, X ;
Nogués, J ;
Suriñach, S ;
Muñoz, JS ;
Baró, MD ;
Hernando, A ;
Morniroli, JP .
PHYSICAL REVIEW B, 2001, 63 (05)
[2]  
ARENTS RA, 1973, FIZ MET METALLOVED+, V36, P277
[3]   STRUCTURAL EVOLUTION OF SPUTTERED AMORPHOUS FE1-XCX FILMS FOR 0.19-LESS-THAN-OR-EQUAL-TO X-LESS-THAN-OR-EQUAL-TO 0.49 [J].
BAUERGROSSE, E ;
LECAER, G .
PHILOSOPHICAL MAGAZINE B-PHYSICS OF CONDENSED MATTER STATISTICAL MECHANICS ELECTRONIC OPTICAL AND MAGNETIC PROPERTIES, 1987, 56 (04) :485-500
[4]  
Chikazumi S., 1997, PHYS FERROMAGNETISM
[5]   Grain-boundary structure and magnetic behavior in nanocrystalline ball-milled iron [J].
DelBianco, L ;
Hernando, A ;
Bonetti, E ;
Navarro, E .
PHYSICAL REVIEW B, 1997, 56 (14) :8894-8901
[6]  
ERSHOVA TP, 1963, DOKL CHEM P ACAD SCI, V151, P724
[7]   EFFECT OF MAGNETIC TRANSITION ON SOLUBILITY OF CARBON IN BCC FE AND FCC CO-NI ALLOYS [J].
HASEBE, M ;
OHTANI, H ;
NISHIZAWA, T .
METALLURGICAL TRANSACTIONS A-PHYSICAL METALLURGY AND MATERIALS SCIENCE, 1985, 16 (05) :913-921
[8]   Shear-induced α→γ transformation in nanoscale Fe-C composite [J].
Ivanisenko, Y ;
MacLaren, I ;
Sauvage, X ;
Valiev, RZ ;
Fecht, HJ .
ACTA MATERIALIA, 2006, 54 (06) :1659-1669
[9]   The first observation of a shear-induced bcc → fcc transformation in nanocrystalline ferrite [J].
Ivanisenko, Y ;
MacLaren, I ;
Valiev, RZ ;
Fecht, HJ .
ADVANCED ENGINEERING MATERIALS, 2005, 7 (11) :1011-1014
[10]   The mechanism of formation of nanostructure and dissolution of cementite in a pearlitic steel during high pressure torsion [J].
Ivanisenko, Y ;
Lojkowski, W ;
Valiev, RZ ;
Fecht, HJ .
ACTA MATERIALIA, 2003, 51 (18) :5555-5570