共 6 条
ON PARTITIONS OF NONNEGATIVE INTEGERS AND REPRESENTATION FUNCTIONS
被引:2
作者:
Yan, Xiao-Hui
[1
,2
]
机构:
[1] Nanjing Normal Univ, Sch Math Sci, Nanjing 210023, Jiangsu, Peoples R China
[2] Nanjing Normal Univ, Inst Math, Nanjing 210023, Jiangsu, Peoples R China
基金:
中国国家自然科学基金;
关键词:
representation function;
partition;
Sarkozy problem;
ADDITIVE PROPERTIES;
SET;
D O I:
10.1017/S0004972718001223
中图分类号:
O1 [数学];
学科分类号:
0701 ;
070101 ;
摘要:
Let N be the set of all nonnegative integers. For any set A subset of N, let R(A, n) denote the number of representations of n as n = a + a' with a, a' is an element of A. There is no partition N = A boolean OR B such that R(A, n) = R(B, n) for all sufficiently large integers n. We prove that a partition N = A boolean OR B satisfies vertical bar R(A, n) - R(B, n)vertical bar <= 1 for all nonnegative integers n if and only if, for each nonnegative integer m, exactly one of 2m + 1 and 2m is in A.
引用
收藏
页码:385 / 387
页数:3
相关论文