ON PARTITIONS OF NONNEGATIVE INTEGERS AND REPRESENTATION FUNCTIONS

被引:2
作者
Yan, Xiao-Hui [1 ,2 ]
机构
[1] Nanjing Normal Univ, Sch Math Sci, Nanjing 210023, Jiangsu, Peoples R China
[2] Nanjing Normal Univ, Inst Math, Nanjing 210023, Jiangsu, Peoples R China
基金
中国国家自然科学基金;
关键词
representation function; partition; Sarkozy problem; ADDITIVE PROPERTIES; SET;
D O I
10.1017/S0004972718001223
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let N be the set of all nonnegative integers. For any set A subset of N, let R(A, n) denote the number of representations of n as n = a + a' with a, a' is an element of A. There is no partition N = A boolean OR B such that R(A, n) = R(B, n) for all sufficiently large integers n. We prove that a partition N = A boolean OR B satisfies vertical bar R(A, n) - R(B, n)vertical bar <= 1 for all nonnegative integers n if and only if, for each nonnegative integer m, exactly one of 2m + 1 and 2m is in A.
引用
收藏
页码:385 / 387
页数:3
相关论文
共 6 条
[1]   On additive properties of two special sequences [J].
Chen, YG ;
Wang, B .
ACTA ARITHMETICA, 2003, 110 (03) :299-303
[2]   Additive properties of certain sets [J].
Dombi, G .
ACTA ARITHMETICA, 2002, 103 (02) :137-146
[3]   Partitions of the set of nonnegative integers with the same representation functions [J].
Kiss, Sandor Z. ;
Sandor, Csaba .
DISCRETE MATHEMATICS, 2017, 340 (06) :1154-1161
[4]   PARTITIONS OF THE SET OF NONNEGATIVE INTEGERS WITH THE SAME REPRESENTATION FUNCTIONS [J].
Li, Jia-Wen ;
Tang, Min .
BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2018, 97 (02) :200-206
[5]   On the structure of some sets which have the same representation functions [J].
Tang, Min ;
Li, Jia-Wen .
PERIODICA MATHEMATICA HUNGARICA, 2018, 77 (02) :232-236
[6]   On a problem of partitions of the set of nonnegative integers with the same representation functions [J].
Tang, Min ;
Chen, Shi-Qiang .
DISCRETE MATHEMATICS, 2018, 341 (11) :3075-3078