Multi-Agent Deep Reinforcement Learning for HVAC Control in Commercial Buildings

被引:193
|
作者
Yu, Liang [1 ,2 ,3 ]
Sun, Yi [4 ]
Xu, Zhanbo [3 ]
Shen, Chao [3 ]
Yue, Dong [2 ,5 ]
Jiang, Tao [6 ]
Guan, Xiaohong [3 ]
机构
[1] Nanjing Univ Posts & Telecommun, Coll Automat, Nanjing 210003, Peoples R China
[2] Nanjing Univ Posts & Telecommun, Coll Artificial Intelligence, Nanjing 210003, Peoples R China
[3] Xi An Jiao Tong Univ, Key Lab Intelligent Networks & Network Secur, Minist Educ, Xian 710049, Peoples R China
[4] Nanjing Univ Posts & Telecommun, Coll Internet Things, Nanjing 210003, Peoples R China
[5] Nanjing Univ Posts & Telecommun, Coll Automat, Inst Adv Technol, Nanjing 210003, Peoples R China
[6] Huazhong Univ Sci & Technol, Sch Elect Informat & Commun, Wuhan Natl Lab Optoelect, Wuhan 430074, Peoples R China
基金
中国博士后科学基金; 中国国家自然科学基金;
关键词
Buildings; Air quality; Atmospheric modeling; Temperature; Heuristic algorithms; Machine learning; Fans; Commercial buildings; HVAC systems; energy cost; multi-zone coordination; random occupancy; thermal comfort; indoor air quality comfort; multi-agent deep reinforcement learning; DEMAND RESPONSE; ENERGY; SYSTEMS; SMART; MODEL; OPTIMIZATION; PRICE;
D O I
10.1109/TSG.2020.3011739
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
In commercial buildings, about 40%-50% of the total electricity consumption is attributed to Heating, Ventilation, and Air Conditioning (HVAC) systems, which places an economic burden on building operators. In this paper, we intend to minimize the energy cost of an HVAC system in a multi-zone commercial building with the consideration of random zone occupancy, thermal comfort, and indoor air quality comfort. Due to the existence of unknown thermal dynamics models, parameter uncertainties (e.g., outdoor temperature, electricity price, and number of occupants), spatially and temporally coupled constraints associated with indoor temperature and CO2 concentration, a large discrete solution space, and a non-convex and non-separable objective function, it is very challenging to achieve the above aim. To this end, the above energy cost minimization problem is reformulated as a Markov game. Then, an HVAC control algorithm is proposed to solve the Markov game based on multi-agent deep reinforcement learning with attention mechanism. The proposed algorithm does not require any prior knowledge of uncertain parameters and can operate without knowing building thermal dynamics models. Simulation results based on real-world traces show the effectiveness, robustness and scalability of the proposed algorithm.
引用
收藏
页码:407 / 419
页数:13
相关论文
共 50 条
  • [21] PowerNet: Multi-Agent Deep Reinforcement Learning for Scalable Powergrid Control
    Chen, Dong
    Chen, Kaian
    Li, Zhaojian
    Chu, Tianshu
    Yao, Rui
    Qiu, Feng
    Lin, Kaixiang
    IEEE TRANSACTIONS ON POWER SYSTEMS, 2022, 37 (02) : 1007 - 1017
  • [22] Multi-Zone HVAC Control With Model-Based Deep Reinforcement Learning
    Ding, Xianzhong
    Cerpa, Alberto
    Du, Wan
    IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING, 2024, : 4408 - 4426
  • [23] Multi-timescale voltage control for distribution system based on multi-agent deep reinforcement learning
    Wu, Zhi
    Li, Yiqi
    Gu, Wei
    Dong, Zengbo
    Zhao, Jingtao
    Liu, Weiliang
    Zhang, Xiao-Ping
    Liu, Pengxiang
    Sun, Qirun
    INTERNATIONAL JOURNAL OF ELECTRICAL POWER & ENERGY SYSTEMS, 2023, 147
  • [24] Deep Reinforcement Learning Agent for Negotiation in Multi-Agent Cooperative Distributed Predictive Control
    Aponte-Rengifo, Oscar
    Vega, Pastora
    Francisco, Mario
    APPLIED SCIENCES-BASEL, 2023, 13 (04):
  • [25] A review of cooperative multi-agent deep reinforcement learning
    Oroojlooy, Afshin
    Hajinezhad, Davood
    APPLIED INTELLIGENCE, 2023, 53 (11) : 13677 - 13722
  • [26] Strategic Interaction Multi-Agent Deep Reinforcement Learning
    Zhou, Wenhong
    Li, Jie
    Chen, Yiting
    Shen, Lin-Cheng
    IEEE ACCESS, 2020, 8 : 119000 - 119009
  • [27] Competitive Evolution Multi-Agent Deep Reinforcement Learning
    Zhou, Wenhong
    Chen, Yiting
    Li, Jie
    PROCEEDINGS OF THE THIRD INTERNATIONAL CONFERENCE ON COMPUTER SCIENCE AND APPLICATION ENGINEERING (CSAE2019), 2019,
  • [28] Sparse communication in multi-agent deep reinforcement learning
    Han, Shuai
    Dastani, Mehdi
    Wang, Shihan
    NEUROCOMPUTING, 2025, 625
  • [29] Research Progress of Multi-Agent Deep Reinforcement Learning
    Ding, Shi-Feiu
    Du, Weiu
    Zhang, Jianu
    Guo, Li-Liu
    Ding, Ding
    Jisuanji Xuebao/Chinese Journal of Computers, 2024, 47 (07): : 1547 - 1567
  • [30] Joint Optimization of Handover Control and Power Allocation Based on Multi-Agent Deep Reinforcement Learning
    Guo, Delin
    Tang, Lan
    Zhang, Xinggan
    Liang, Ying-Chang
    IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 2020, 69 (11) : 13124 - 13138