Virtual testing of composites: Imposing periodic boundary conditions on general finite element meshes

被引:17
作者
Akpoyomare, A. I. [1 ]
Okereke, M. I. [1 ]
Bingley, M. S. [1 ]
机构
[1] Univ Greenwich, Dept Engn Sci, Chatham ME4 4TB, Kent, England
关键词
Effective properties; Periodic boundary condition; Textile composite; Meso-scale modelling; Finite element; Heterogeneous materials; Virtual testing; 3D WOVEN COMPOSITES; TEXTILE COMPOSITES; INTERPOLATION; FRAMEWORK; DAMAGE;
D O I
10.1016/j.compstruct.2016.10.114
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
Predicting the effective thermo-mechanical response of heterogeneous materials such as composites, using virtual testing techniques, requires imposing periodic boundary conditions on geometric domains. However, classic methods of imposing periodic boundary conditions require identical finite element mesh constructions on corresponding regions of geometric domains. This type of mesh construction is infeasible for heterogeneous materials with complex architecture such as textile composites where arbitrary mesh constructions are commonplace. This paper discusses interpolation technique for imposing periodic boundary conditions to arbitrary finite element mesh constructions (i.e. identical or nonidentical meshes on corresponding regions of geometric domains), for predicting the effective properties of complex heterogeneous materials, using a through-thickness angle interlock textile composite as a test case. Furthermore, it espouses the implementation of the proposed periodic boundary condition enforcement technique in commercial finite element solvers. Benchmark virtual tests on identical and nonidentical meshes demonstrate the high fidelity of the proposed periodic boundary condition enforcement technique, in comparison to the conventional technique of imposing periodic boundary condition and experimental data. (C) 2016 Elsevier Ltd. All rights reserved.
引用
收藏
页码:983 / 994
页数:12
相关论文
共 21 条
  • [1] Scattered data interpolation methods for electronic imaging systems: a survey
    Amidror, I
    [J]. JOURNAL OF ELECTRONIC IMAGING, 2002, 11 (02) : 157 - 176
  • [2] Determination of in-plane shear modulus of 3D woven composites with large repeat unit cells
    Buchanan, S.
    Archer, E.
    Townsend, D.
    Jenkins, S.
    McIlhagger, A. T.
    Quinn, J. P.
    [J]. PLASTICS RUBBER AND COMPOSITES, 2012, 41 (4-5) : 194 - 198
  • [3] Analytical elastic stiffness model for 3D woven orthogonal interlock composites
    Buchanan, Saul
    Grigorash, Alexander
    Archer, Edward
    McIlhagger, Alistair
    Quinn, Justin
    Stewart, Graeme
    [J]. COMPOSITES SCIENCE AND TECHNOLOGY, 2010, 70 (11) : 1597 - 1604
  • [4] THE MACROSCOPIC ELASTICITY OF 3D WOVEN COMPOSITES
    COX, BN
    DADKHAH, MS
    [J]. JOURNAL OF COMPOSITE MATERIALS, 1995, 29 (06) : 785 - 819
  • [5] Three-dimensional micromechanical modeling of voided polymeric materials
    Danielsson, M
    Parks, DM
    Boyce, MC
    [J]. JOURNAL OF THE MECHANICS AND PHYSICS OF SOLIDS, 2002, 50 (02) : 351 - 379
  • [6] Farahmand B, 2009, VIRTUAL TESTING AND PREDICTIVE MODELING, P1, DOI 10.1007/978-0-387-95924-5_1
  • [7] In-plane and through-thickness properties, failure modes, damage and delamination in 3D woven carbon fibre composites subjected to impact loading
    Gerlach, Robert
    Siviour, Clive R.
    Wiegand, Jens
    Petrinic, Nik
    [J]. COMPOSITES SCIENCE AND TECHNOLOGY, 2012, 72 (03) : 397 - 411
  • [8] Hinton MJ, 2006, FAILURE CRITERIA FIB
  • [9] Ivanov DS, 2015, WOODH PUB S COMPOS S, P21, DOI 10.1016/B978-0-85709-523-7.00002-5
  • [10] Application of periodic boundary conditions on multiple part finite element meshes for the meso-scale homogenization of textile fabric composites
    Jacques, S.
    De Baere, I.
    Van Paepegem, W.
    [J]. COMPOSITES SCIENCE AND TECHNOLOGY, 2014, 92 : 41 - 54