Communication between circadian clusters: The key to a plastic network

被引:28
作者
Beckwith, Esteban J. [1 ]
Fernanda Ceriani, M. [2 ]
机构
[1] Univ London Imperial Coll Sci Technol & Med, Dept Life Sci, London SW7 2AZ, England
[2] IIB BA CONICET, Fdn Inst Leloir, Lab Genet Comportamiento, RA-1405 Buenos Aires, BWE, Argentina
关键词
Circadian network; Intercellular communication; Neuropeptide; Neurotransmitter; Complex rhythm; Drosophila; EVENING OSCILLATOR MODEL; ION-TRANSPORT PEPTIDE; SHORT NEUROPEPTIDE F; PACEMAKER NEURONS; CLOCK NEURONS; LATERAL NEURONS; FORCED DESYNCHRONIZATION; SYNAPTIC-TRANSMISSION; LOCOMOTOR RHYTHMS; PDF NEURONS;
D O I
10.1016/j.febslet.2015.08.017
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Drosophila melanogaster is a model organism that has been instrumental in understanding the circadian clock at different levels. A range of studies on the anatomical and neurochemical properties of clock neurons in the fly led to a model of interacting neural circuits that control circadian behavior. Here we focus on recent research on the dynamics of the multiple communication pathways between clock neurons, and, particularly, on how the circadian timekeeping system responds to changes in environmental conditions. It is increasingly clear that the fly clock employs multiple signalling cues, such as neuropeptides, fast neurotransmitters, and other signalling molecules, in the dynamic interplay between neuronal clusters. These neuronal groups seem to interact in a plastic fashion, e.g., rearranging their hierarchy in response to changing environmental conditions. A picture is emerging supporting that these dynamic mechanisms are in place to provide an optimal balance between flexibility and an extraordinary accuracy. (C) 2015 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.
引用
收藏
页码:3336 / 3342
页数:7
相关论文
共 98 条
  • [21] Mmp1 Processing of the PDF Neuropeptide Regulates Circadian Structural Plasticity of Pacemaker Neurons
    Depetris-Chauvin, Ana
    Fernandez-Gamba, Agata
    Axel Gorostiza, E.
    Herrero, Anastasia
    Castano, Eduardo M.
    Fernanda Ceriani, M.
    [J]. PLOS GENETICS, 2014, 10 (10):
  • [22] The Logic of Circadian Organization in Drosophila
    Dissel, Stephane
    Hansen, Celia N.
    Oezkaya, Oezge
    Hemsley, Matthew
    Kyriacou, Charalambos P.
    Rosato, Ezio
    [J]. CURRENT BIOLOGY, 2014, 24 (19) : 2257 - 2266
  • [23] Drosophila CRY is a deep brain circadian photoreceptor
    Emery, P
    Stanewsky, R
    Helfrich-Förster, C
    Emery-Le, M
    Hall, JC
    Rosbash, M
    [J]. NEURON, 2000, 26 (02) : 493 - 504
  • [24] Circadian remodeling of neuronal circuits involved in rhythmic behavior
    Fernandez, Maria Paz
    Berni, Jimena
    Ceriani, Maria Fernanda
    [J]. PLOS BIOLOGY, 2008, 6 (03) : 518 - 524
  • [25] CRYPTOCHROME Is a Blue-Light Sensor That Regulates Neuronal Firing Rate
    Fogle, Keri J.
    Parson, Kelly G.
    Dahm, Nicole A.
    Holmes, Todd C.
    [J]. SCIENCE, 2011, 331 (6023) : 1409 - 1413
  • [26] The circadian clock: Pacemaker and tumour suppressor
    Fu, LN
    Lee, CC
    [J]. NATURE REVIEWS CANCER, 2003, 3 (05) : 350 - 361
  • [27] Morning and evening peaks of activity rely on different clock neurons of the Drosophila brain
    Grima, B
    Chèlot, E
    Xia, RH
    Rouyer, F
    [J]. NATURE, 2004, 431 (7010) : 869 - 873
  • [28] PDF Neuron Firing Phase-shifts Key Circadian Activity Neurons in Drosophila
    Guo, Fang
    Cerullo, Isadora
    Chen, Xiao
    Rosbash, Michael
    [J]. ELIFE, 2014, 3
  • [29] GABA modulates Drosophila circadian clock neurons via GABAB receptors and decreases in calcium
    Hamasaka, Y
    Wegener, C
    Nässel, DR
    [J]. JOURNAL OF NEUROBIOLOGY, 2005, 65 (03): : 225 - 240
  • [30] Glutamate and its metabotropic receptor in Drosophila clock neuron circuits
    Hamasaka, Yasutaka
    Rieger, Dirk
    Parmentier, Marie-Laure
    Grau, Yves
    Helfrich-Foerster, Charlotte
    Naessel, Dick R.
    [J]. JOURNAL OF COMPARATIVE NEUROLOGY, 2007, 505 (01) : 32 - 45