Asymptotic behaviors of solutions to quasilinear elliptic equations with critical Sobolev growth and Hardy potential

被引:32
作者
Xiang, Chang-Lin [1 ]
机构
[1] Univ Jyvaskyla, Dept Math & Stat, FI-40014 Jyvaskyla, Finland
基金
芬兰科学院;
关键词
Quasilinear elliptic equations; Hardy's inequality; Comparison principle; Asymptotic behaviors; CRITICAL EXPONENTS; SYMMETRY; INEQUALITIES; EXISTENCE;
D O I
10.1016/j.jde.2015.05.007
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Optimal estimates on the asymptotic behaviors of weak solutions both at the origin and at the infinity are obtained to the following quasilinear elliptic equations -Delta(p)u - mu/vertical bar x vertical bar(p)vertical bar u vertical bar(p-2)u = Q(x)vertical bar u vertical bar N-p/N-p-2u, X is an element of R-N, where 1 < p < N, 0 <= mu < ((N - p)/p)(P) and Q is an element of L-infinity(R-N). (C) 2015 Elsevier Inc. All rights reserved.
引用
收藏
页码:3929 / 3954
页数:26
相关论文
共 28 条
[1]  
Abdellaoui B, 2004, ADV DIFFERENTIAL EQU, V9, P481
[2]  
Abdellaoui B., 2006, Boll. Unione Mat. Ital. Sez. B Artic. Ric. Mat., P445
[3]  
[Anonymous], 1952, Inequalities
[4]  
[Anonymous], 1997, COURANT LECT NOTES M
[5]  
Azorero JPG, 1998, J DIFFER EQUATIONS, V144, P441
[6]   Weak eigenfunctions for the linearization of extremal elliptic problems [J].
Cabre, X ;
Martel, Y .
JOURNAL OF FUNCTIONAL ANALYSIS, 1998, 156 (01) :30-56
[7]   ASYMPTOTIC SYMMETRY AND LOCAL BEHAVIOR OF SEMILINEAR ELLIPTIC-EQUATIONS WITH CRITICAL SOBOLEV GROWTH [J].
CAFFARELLI, LA ;
GIDAS, B ;
SPRUCK, J .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1989, 42 (03) :271-297
[8]   Infinitely many solutions for p-Laplacian equation involving critical Sobolev growth [J].
Cao, Daomin ;
Peng, Shuangjie ;
Yan, Shusen .
JOURNAL OF FUNCTIONAL ANALYSIS, 2012, 262 (06) :2861-2902
[9]   Infinitely many solutions for an elliptic problem involving critical Sobolev growth and Hardy potential [J].
Cao, Daomin ;
Yan, Shusen .
CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2010, 38 (3-4) :471-501
[10]   Solutions to critical elliptic equations with multi-singular inverse square potentials [J].
Cao, DM ;
Han, PG .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2006, 224 (02) :332-372