CALDERON PRECONDITIONER FOR A MARCHING- ON- IN- DEGREE SOLUTION OF TIME- DOMAIN ELECTRIC FIELD INTEGRAL EQUATION

被引:1
作者
Shi, Yan [1 ]
Tang, Wei [1 ]
Liang, Chang-Hong [1 ]
机构
[1] Xidian Univ, Sch Elect Engn, Xian, Shaanxi, Peoples R China
基金
中国国家自然科学基金;
关键词
marching-on-in-degree; time-domain Calderon identity; time-domain electric field integral equation; SCATTERING; IDENTITIES;
D O I
10.1002/mop.28258
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
A marching-on-in-degree (MOD)-based scheme has been developed to solve a Calderon preconditioned time-domain electric field integral equation (TDEFIE) for the analysis of transient scattering from an arbitrarily closed conducting object. By using the time-domain Calderon identity, the TDEFIE is immune to dense mesh breakdown. With the use of weighted Laguerre polynomials as entire-domain temporal basis functions and the Galerkin temporal testing procedure, the MOD algorithm overcomes the late-time instability. Numerical results show that the proposed algorithm can give rise to rapidly convergent solutions. (c) 2014 Wiley Periodicals, Inc. Microwave Opt Technol Lett 56:1069-1072, 2014
引用
收藏
页码:1069 / 1072
页数:4
相关论文
共 11 条
[1]   A multiplicative Calderon preconditioner for the electric field integral equation [J].
Andriulli, Francesco P. ;
Cools, Kristof ;
Bagci, Hakan ;
Olyslager, Femke ;
Buffa, Annalisa ;
Christiansen, Snorre ;
Michielssen, Eric .
IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, 2008, 56 (08) :2398-2412
[2]   Time Domain Calderon Identities and Their Application to the Integral Equation Analysis of Scattering by PEC Objects Part II: Stability [J].
Andriulli, Francesco P. ;
Cools, Kristof ;
Olyslager, Femke ;
Michielssen, Eric .
IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, 2009, 57 (08) :2365-2375
[3]   Solution of time domain electric field integral equation using the Laguerre polynomials [J].
Chung, YS ;
Sarkar, TK ;
Jung, BH ;
Salazar-Palma, M ;
Ji, Z ;
Jang, S ;
Kim, K .
IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, 2004, 52 (09) :2319-2328
[4]   Time Domain Calderon Identities and Their Application to the Integral Equation Analysis of Scattering by PEC Objects Part I: Preconditioning [J].
Cools, Kristof ;
Andriulli, Francesco P. ;
Olyslager, Femke ;
Michielssen, Eric .
IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, 2009, 57 (08) :2352-2364
[5]   Solving time domain electric field integral equation without the time variable [J].
Ji, Z ;
Sarkar, TK ;
Jung, BH ;
Yuan, MT ;
Salazar-Palma, M .
IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, 2006, 54 (01) :258-262
[6]  
Rao SM, 1998, MICROW OPT TECHN LET, V17, P321, DOI 10.1002/(SICI)1098-2760(19980405)17:5<321::AID-MOP14>3.0.CO
[7]  
2-6
[8]   TRANSIENT SCATTERING BY CONDUCTING SURFACES OF ARBITRARY SHAPE [J].
RAO, SM ;
WILTON, DR .
IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, 1991, 39 (01) :56-61
[9]   A Higher-Order Nystrom Scheme for a Marching-On-in-Degree Solution of the Magnetic Field Integral Equation [J].
Shi, Yan ;
Jin, Jian-Ming .
IEEE ANTENNAS AND WIRELESS PROPAGATION LETTERS, 2011, 10 :1059-1062
[10]   A Time-Domain Volume Integral Equation and Its Marching-On-in-Degree Solution for Analysis of Dispersive Dielectric Objects [J].
Shi, Yan ;
Jin, Jian-Ming .
IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, 2011, 59 (03) :969-978