Forcing linearity numbers for abelian groups

被引:0
|
作者
Fuchs, L [1 ]
机构
[1] Tulane Univ, Dept Math, New Orleans, LA 70118 USA
关键词
abelian group; homogeneous map; forcing linearity number;
D O I
10.1081/AGB-120029908
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Forcing linearity number of an abelian group A is defined as the infimum of cardinalities of sets S of proper subgroups of A such that any homogeneous map f : A --> A is an endomorphism of A whenever it is linear on each member of S. The forcing linearity number is determined for all abelian groups. These numbers can be 0, 1, 2, p + 2 (for primes p), or N-0. There is a pathological case: the direct sums of two non-zero cyclic p-groups, where such a number does not exist.
引用
收藏
页码:1855 / 1864
页数:10
相关论文
共 50 条
  • [21] On homogeneous Abelian groups
    Kalenova, BS
    Khisamiev, NG
    SIBERIAN MATHEMATICAL JOURNAL, 1997, 38 (05) : 950 - 956
  • [22] Small Abelian groups
    Gerdt I.V.
    Journal of Mathematical Sciences, 2008, 154 (3) : 279 - 283
  • [23] Sequences of Endomorphism Groups of Abelian Groups
    Timoshenko, E. A.
    Tsarev, A. V.
    MATHEMATICAL NOTES, 2018, 104 (1-2) : 309 - 315
  • [24] Endoprimal abelian groups
    Kaarli, K
    Márki, L
    JOURNAL OF THE AUSTRALIAN MATHEMATICAL SOCIETY SERIES A-PURE MATHEMATICS AND STATISTICS, 1999, 67 : 412 - 428
  • [25] Biembeddings of Abelian Groups
    Grannell, M. J.
    Knor, M.
    JOURNAL OF COMBINATORIAL DESIGNS, 2010, 18 (01) : 71 - 83
  • [26] Multiplication groups of quotient divisible Abelian groups
    Kompantseva, Ekaterina Igorevna
    Nguyen, Thi Quynh Trang
    JOURNAL OF ALGEBRA AND ITS APPLICATIONS, 2024, 23 (10)
  • [27] Periodic groups acting freely on Abelian groups
    Lytkina D.V.
    Algebra and Logic, 2010, 49 (3) : 256 - 261
  • [28] Investigation of some homomorphism groups of Abelian groups
    Yu. V. Kostromina
    Mathematical Notes, 2012, 91 : 885 - 888
  • [29] Periodic groups acting freely on abelian groups
    A. Kh. Zhurtov
    D. V. Lytkina
    V. D. Mazurov
    A. I. Sozutov
    Proceedings of the Steklov Institute of Mathematics, 2014, 285 : 209 - 215
  • [30] PERIODIC GROUPS ACTING FREELY ON ABELIAN GROUPS
    Lytkina, D. V.
    ALGEBRA AND LOGIC, 2010, 49 (03) : 256 - 261