Experimental investigation of some aspects of insect-like flapping flight aerodynamics for application to micro air vehicles

被引:53
作者
Ansari, Salman A. [1 ]
Phillips, Nathan [2 ]
Stabler, Graham [2 ]
Wilkins, Peter C. [3 ]
Zbikowski, Rafal [2 ]
Knowles, Kevin [2 ]
Bikowski, Z.
机构
[1] Meggitt Avion, Fareham PO15 5SH, England
[2] Cranfield Univ, Def Acad UK, Swindon SN6 8LA, Wilts, England
[3] Dstl Farnborough, Farnborough GU14 0LX, Hants, England
基金
英国工程与自然科学研究理事会;
关键词
Low Reynolds number flow; Insect flight; Flapping wing; Micro air vehicles; Particle image velocimetry; Leading-edge vortex; Kelvin-Helmholtz instability; LEADING-EDGE VORTEX; TETHERED FLIGHT; LIFT; FLOW; FORCE; WINGS; VISUALIZATION; PERFORMANCE; GENERATION; MECHANISM;
D O I
10.1007/s00348-009-0661-2
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
Insect-like flapping flight offers a power-efficient and highly manoeuvrable basis for micro air vehicles for indoor applications. Some aspects of the aerodynamics associated with the sweeping phase of insect wing kinematics are examined by making particle image velocimetry measurements on a rotating wing immersed in a tank of seeded water. The work is motivated by the paucity of data with quantified error on insect-like flapping flight, and aims to fill this gap by providing a detailed description of the experimental setup, quantifying the uncertainties in the measurements and explaining the results. The experiments are carried out at two Reynolds numbers-500 and 15,000-accounting for scales pertaining to many insects and future flapping-wing micro air vehicles, respectively. The results from the experiments are used to describe prominent flow features, and Reynolds number-related differences are highlighted. In particular, the behaviour of the leading-edge vortex at these Reynolds numbers is studied and the presence of Kelvin-Helmholtz instability observed at the higher Reynolds number in computational fluid dynamics calculations is also verified.
引用
收藏
页码:777 / 798
页数:22
相关论文
共 52 条
[1]  
[Anonymous], BIOMECHANICS STRUCTU
[2]   Aerodynamic modelling of insect-like flapping flight for micro air vehicles [J].
Ansari, S. A. ;
Zbikowski, R. ;
Knowles, K. .
PROGRESS IN AEROSPACE SCIENCES, 2006, 42 (02) :129-172
[3]   Non-linear unsteady aerodynamic model for insect-like flapping wings in the hover. Part 1: methodology and analysis [J].
Ansari, S. A. ;
Zbikowski, R. ;
Knowles, K. .
PROCEEDINGS OF THE INSTITUTION OF MECHANICAL ENGINEERS PART G-JOURNAL OF AEROSPACE ENGINEERING, 2006, 220 (G2) :61-83
[4]  
Ansari S. A., 2004, THESIS CRANFIELD U S
[5]  
ANSARI SA, 2009, 39 AIAA FLUID DYN C, P1
[6]  
ANSARI SA, 2006, J AEROSPACE ENG, V220, P169, DOI DOI 10.1243/09544100JAERO50
[7]   Spanwise flow and the attachment of the leading-edge vortex on insect wings [J].
Birch, JM ;
Dickinson, MH .
NATURE, 2001, 412 (6848) :729-733
[8]   Force production and flow structure of the leading edge vortex on flapping wings at high and low Reynolds numbers [J].
Birch, JM ;
Dickson, WB ;
Dickinson, MH .
JOURNAL OF EXPERIMENTAL BIOLOGY, 2004, 207 (07) :1063-1072
[9]  
BRODSKY AK, 1991, J EXP BIOL, V161, P77
[10]  
Dickinson MH, 1996, AM ZOOL, V36, P537