Nanoporous Polytetrafl uoroethylene/Silica Composite Separator as a High-Performance All-Vanadium Redox Flow Battery Membrane

被引:148
|
作者
Wei, Xiaoliang [1 ]
Nie, Zimin [1 ]
Luo, Qingtao [1 ]
Li, Bin [1 ]
Chen, Baowei [1 ]
Simmons, Kevin [1 ]
Sprenkle, Vincent [1 ]
Wang, Wei [1 ]
机构
[1] Pacific NW Natl Lab, Richland, WA 99352 USA
关键词
all-vanadium redox flow batteries; membrane; nanoporous separator; polytetrafluoroethylene; silica particles; ENERGY-STORAGE; PROGRESS; STABILITY;
D O I
10.1002/aenm.201201112
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
A novel low-cost nanoporous polytetrafluoroethylene (PTFE)/silica composite separator has been prepared and evaluated for its use in an all-vanadium redox flow battery (VRB). The separator consists of silica particles enmeshed in a PTFE fibril matrix. It possesses unique nanoporous structures with an average pore size of 38 nm and a porosity of 48%. These pores function as the ion transport channels during redox flow battery operation. This separator provides excellent electrochemical performance in the mixed-acid VRB system. The VRB using this separator delivers impressive energy efficiency, rate capability, and temperature tolerance. In additon, the flow cell using the novel separator also demonstrates an exceptional capacity retention capability over extended cycling, thus offering excellent stability for long-term operation. The characteristics of low cost, excellent electrochemical performance and proven chemical stability afford the PTFE/silica nanoporous separator great potential as a substitute for the Nafion membrane used in VRB applications.
引用
收藏
页码:1215 / 1220
页数:6
相关论文
共 50 条
  • [41] Comprehensive Analysis of Critical Issues in All-Vanadium Redox Flow Battery
    Huang, Zebo
    Mu, Anle
    Wu, Longxing
    Yang, Bin
    Qian, Ye
    Wang, Jiahui
    ACS SUSTAINABLE CHEMISTRY & ENGINEERING, 2022, 10 (24) : 7786 - 7810
  • [42] An enhancement to Vynnycky's model for the all-vanadium redox flow battery
    Chen, Ching Liang
    Yeoh, Hak Koon
    Chakrabarti, Mohammed Harun
    ELECTROCHIMICA ACTA, 2014, 120 : 167 - 179
  • [43] Electrochemical Properties of Current Collector in the All-vanadium Redox Flow Battery
    Hwang, Gan-Jin
    Oh, Yong-Hwan
    Ryu, Cheol-Hwi
    Choi, Ho-Sang
    KOREAN CHEMICAL ENGINEERING RESEARCH, 2014, 52 (02): : 182 - 186
  • [44] Non-isothermal modelling of the all-vanadium redox flow battery
    Al-Fetlawi, H.
    Shah, A. A.
    Walsh, F. C.
    ELECTROCHIMICA ACTA, 2009, 55 (01) : 78 - 89
  • [45] Attributes and performance analysis of all-vanadium redox flow battery based on a novel flow field design
    Huang, Zebo
    Yang, Chao
    Xie, Xing
    Yang, Bin
    Liu, Yangsheng
    Guo, Zhenwei
    IONICS, 2023, 29 (07) : 2793 - 2803
  • [46] Mathematical Model to Study Vanadium Ion Crossover in an All-Vanadium Redox Flow Battery
    Chou, Yi-Sin
    Yen, Shi-Chern
    Arpornwichanop, Amornchai
    Singh, Bhupendra
    Chen, Yong-Song
    ACS SUSTAINABLE CHEMISTRY & ENGINEERING, 2021, 9 (15) : 5377 - 5387
  • [47] Attributes and performance analysis of all-vanadium redox flow battery based on a novel flow field design
    Zebo Huang
    Chao Yang
    Xing Xie
    Bin Yang
    Yangsheng Liu
    Zhenwei Guo
    Ionics, 2023, 29 : 2793 - 2803
  • [48] Electrolyte circulation effects in electrochemical performance for different flow fields of all-vanadium redox flow battery
    Kumar, Sanjay
    Jayanti, Sreenivas
    Singh, Arvind
    ENERGY STORAGE, 2023, 5 (02)
  • [49] Anion effects on the redox kinetics of positive electrolyte of the all-vanadium redox flow battery
    Holland-Cunz, Matthaa Verena
    Friedl, Jochen
    Stimming, Ulrich
    JOURNAL OF ELECTROANALYTICAL CHEMISTRY, 2018, 819 : 306 - 311
  • [50] Characteristics and performance of 10 kW class all-vanadium redox-flow battery stack
    Zhao, Ping
    Zhang, Huamin
    Zhou, Hantao
    Chen, Jian
    Gao, Sujun
    Yi, Baolian
    JOURNAL OF POWER SOURCES, 2006, 162 (02) : 1416 - 1420