Fast contactless vibrating structure characterization using real time field programmable gate array-based digital signal processing: Demonstrations with a passive wireless acoustic delay line probe and vision

被引:5
作者
Goavec-Merou, G. [1 ]
Chretien, N. [2 ]
Friedt, J. -M [2 ]
Sandoz, P. [3 ]
Martin, G. [1 ]
Lenczner, M. [1 ]
Ballandras, S. [4 ]
机构
[1] Univ Franche Comte, Time & Frequency Dept, FEMTO ST, CNRS,UMR 6174, F-25030 Besancon, France
[2] SENSeOR SAS, Besancon, France
[3] Univ Franche Comte, Dept Appl Mech, FEMTO ST, CNRS,UMR 6174, F-25030 Besancon, France
[4] Frecnsys SASU, Besancon, France
关键词
D O I
10.1063/1.4861190
中图分类号
TH7 [仪器、仪表];
学科分类号
0804 ; 080401 ; 081102 ;
摘要
Vibrating mechanical structure characterization is demonstrated using contactless techniques best suited for mobile and rotating equipments. Fast measurement rates are achieved using Field Programmable Gate Array (FPGA) devices as real-time digital signal processors. Two kinds of algorithms are implemented on FPGA and experimentally validated in the case of the vibrating tuning fork. A first application concerns in-plane displacement detection by vision with sampling rates above 10 kHz, thus reaching frequency ranges above the audio range. A second demonstration concerns pulsed-RADAR cooperative target phase detection and is applied to radiofrequency acoustic transducers used as passive wireless strain gauges. In this case, the 250 ksamples/s refresh rate achieved is only limited by the acoustic sensor design but not by the detection bandwidth. These realizations illustrate the efficiency, interest, and potentialities of FPGA-based real-time digital signal processing for the contactless interrogation of passive embedded probes with high refresh rates. (C) 2014 AIP Publishing LLC.
引用
收藏
页数:10
相关论文
共 39 条
  • [1] Wireless sensing and identification based on radar cross section variability measurement of passive electromagnetic sensors
    Aubert, Herve
    Chebila, Franck
    Jatlaoui, Mehdi
    Trang Thai
    Hallil, Hamida
    Traille, Anya
    Bouaziz, Sofiene
    Rifai, Ayoub
    Pons, Patrick
    Menini, Philippe
    Tentzeris, Manos
    [J]. ANNALS OF TELECOMMUNICATIONS, 2013, 68 (7-8) : 425 - 435
  • [2] Bao X. Q., 1987, IEEE 1987 Ultrasonics Symposium Proceedings (Cat. No.87CH2492-7), P583
  • [3] Non-contact torque sensors based on saw resonators
    Beckley, J
    Kalinin, V
    Lee, M
    Voliansky, K
    [J]. PROCEEDINGS OF THE 2002 IEEE INTERNATIONAL FREQUENCY CONTROL SYMPOSIUM & PDA EXHIBITION, 2002, : 202 - 213
  • [4] State of the art in wireless sensing with surface acoustic waves
    Bulst, WE
    Fischerauer, G
    Reindl, L
    [J]. IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, 2001, 48 (02) : 265 - 271
  • [5] Remote vibration measurement: A wireless passive surface acoustic wave resonator fast probing strategy
    Friedt, J. -M.
    Droit, C.
    Ballandras, S.
    Alzuaga, S.
    Martin, G.
    Sandoz, P.
    [J]. REVIEW OF SCIENTIFIC INSTRUMENTS, 2012, 83 (05)
  • [6] Condition monitoring of wind turbines: Techniques and methods
    Garcia Marquez, Fausto Pedro
    Mark Tobias, Andrew
    Pinar Perez, Jesus Maria
    Papaelias, Mayorkinos
    [J]. RENEWABLE ENERGY, 2012, 46 : 169 - 178
  • [7] Deflection measurement on vibrating stay cables by non-contact microwave interferometer
    Gentile, Carmelo
    [J]. NDT & E INTERNATIONAL, 2010, 43 (03) : 231 - 240
  • [8] Wireless sensors for predictive maintenance of rotating equipment in research reactors
    Hashemian, H. M.
    [J]. ANNALS OF NUCLEAR ENERGY, 2011, 38 (2-3) : 665 - 680
  • [9] 3D digital image correlation methods for full-field vibration measurement
    Helfrick, Mark N.
    Niezrecki, Christopher
    Avitabile, Peter
    Schmidt, Timothy
    [J]. MECHANICAL SYSTEMS AND SIGNAL PROCESSING, 2011, 25 (03) : 917 - 927
  • [10] Hutter R., 2012, WIR SURF AC WAV SENS, P1