A Fourth Order Modified Trigonometrically Fitted Symplectic Runge-Kutta-Nystrom method

被引:0
作者
Kalogiratou, Z. [1 ]
Monovasilis, Th. [2 ]
Simos, T. E. [3 ,4 ]
机构
[1] Technol Educ Inst Western Macedonia Kastoria, Dept Informat & Comp Technol, POB 30, Kastoria 52100, Greece
[2] Tech Educat Inst Western Macedonia, Dept Int Trade, Kastoria 52100, Greece
[3] King Saud Univ, Coll Sci, Dept Math, Riyadh 11451, Saudi Arabia
[4] Univ Peloponnese, Dept Comp Sci & Technol, Lab Computat Sci, Tripolis 22100, Greece
来源
11TH INTERNATIONAL CONFERENCE OF NUMERICAL ANALYSIS AND APPLIED MATHEMATICS 2013, PTS 1 AND 2 (ICNAAM 2013) | 2013年 / 1558卷
关键词
Runge Kutta Nystrom methods; Symplectic methods; Hamiltonian Systems; Exponential Fitting;
D O I
10.1063/1.4825719
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this work we construct a modified trigonometrically fitted symplectic Runge Kutta Nystrom method based on the forth order five stages method of Calvo and Sanz-Serna. We apply the new method on the numerical integration of the two-body problem.
引用
收藏
页码:1176 / 1180
页数:5
相关论文
共 50 条
[41]   Explicit symplectic partitioned Runge-Kutta-Nystrom methods for non-autonomous dynamics [J].
Diele, Fasma ;
Marangi, Carmela .
APPLIED NUMERICAL MATHEMATICS, 2011, 61 (07) :832-843
[42]   A phase-fitted Runge-Kutta-Nystrom method for the numerical solution of initial value problems with oscillating solutions [J].
Papadopoulos, D. F. ;
Anastassi, Z. A. ;
Simos, T. E. .
COMPUTER PHYSICS COMMUNICATIONS, 2009, 180 (10) :1839-1846
[43]   A mono-implicit Runge-Kutta-Nystrom modification of the Numerov method [J].
VanHecke, T ;
VanDaele, M ;
VandenBerghe, G ;
DeMeyer, H .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 1997, 78 (01) :161-177
[44]   A fifth alaebraic order trigonometrically-fitted modified Runge-Kutta Zonneveld method for the numerical solution of orbital problems [J].
Sakas, DP ;
Simos, TE .
MATHEMATICAL AND COMPUTER MODELLING, 2005, 42 (7-8) :903-920
[45]   Construction of explicit symmetric and symplectic methods of Runge-Kutta-Nystrom type for solving perturbed oscillators [J].
Franco, J. M. ;
Gomez, I. .
APPLIED MATHEMATICS AND COMPUTATION, 2013, 219 (09) :4637-4649
[46]   Multi-symplectic Runge-Kutta-Nystrom methods for nonlinear Schrodinger equations with variable coefficients [J].
Hong, Jialin ;
Liu, Xiao-yan ;
Li, Chun .
JOURNAL OF COMPUTATIONAL PHYSICS, 2007, 226 (02) :1968-1984
[47]   On the generation of P-stable exponentially fitted Runge-Kutta-Nystrom methods by exponentially fitted Runge-Kutta methods (vol 200, pg 778, 2007) [J].
Van de Vyver, Hans .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2007, 200 (02) :778-779
[48]   A trigonometrically fitted Runge-Kutta method for the numerical solution of orbital problems [J].
Anastassi, ZA ;
Simos, TE .
NEW ASTRONOMY, 2005, 10 (04) :301-309
[49]   Symplectic and trigonometrically fitted symplectic methods of second and third order [J].
Monovasilis, Th. ;
Simos, T. E. .
PHYSICS LETTERS A, 2006, 354 (5-6) :377-383
[50]   A Modified Runge-Kutta-Nystrom Method by using Phase Lag Properties for the Numerical Solution of Orbital Problems [J].
Papadopoulos, Dimitris F. ;
Simos, T. E. .
APPLIED MATHEMATICS & INFORMATION SCIENCES, 2013, 7 (02) :433-437