A Fourth Order Modified Trigonometrically Fitted Symplectic Runge-Kutta-Nystrom method

被引:0
作者
Kalogiratou, Z. [1 ]
Monovasilis, Th. [2 ]
Simos, T. E. [3 ,4 ]
机构
[1] Technol Educ Inst Western Macedonia Kastoria, Dept Informat & Comp Technol, POB 30, Kastoria 52100, Greece
[2] Tech Educat Inst Western Macedonia, Dept Int Trade, Kastoria 52100, Greece
[3] King Saud Univ, Coll Sci, Dept Math, Riyadh 11451, Saudi Arabia
[4] Univ Peloponnese, Dept Comp Sci & Technol, Lab Computat Sci, Tripolis 22100, Greece
来源
11TH INTERNATIONAL CONFERENCE OF NUMERICAL ANALYSIS AND APPLIED MATHEMATICS 2013, PTS 1 AND 2 (ICNAAM 2013) | 2013年 / 1558卷
关键词
Runge Kutta Nystrom methods; Symplectic methods; Hamiltonian Systems; Exponential Fitting;
D O I
10.1063/1.4825719
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this work we construct a modified trigonometrically fitted symplectic Runge Kutta Nystrom method based on the forth order five stages method of Calvo and Sanz-Serna. We apply the new method on the numerical integration of the two-body problem.
引用
收藏
页码:1176 / 1180
页数:5
相关论文
共 50 条
[31]   AN EXPLICIT RUNGE-KUTTA-NYSTROM METHOD IS CANONICAL IF AND ONLY IF ITS ADJOINT IS EXPLICIT [J].
OKUNBOR, D ;
SKEEL, RD .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1992, 29 (02) :521-527
[32]   Stability of Runge-Kutta-Nystrom methods [J].
Alonso-Mallo, I ;
Cano, B ;
Moreta, MJ .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2006, 189 (1-2) :120-131
[33]   A family of trigonometrically-fitted partitioned Runge-Kutta symplectic methods [J].
Monovasills, Th. ;
Kalogiratou, Z. ;
Simos, T. E. .
COMPUTATION IN MODERN SCIENCE AND ENGINEERING VOL 2, PTS A AND B, 2007, 2 :1306-+
[34]   INTERPOLATING RUNGE-KUTTA-NYSTROM METHODS OF HIGH-ORDER [J].
TSITOURAS, C ;
PAPAGEORGIOU, G .
INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 1993, 47 (3-4) :209-217
[35]   Symplectic explicit methods of Runge-Kutta-Nystrom type for solving perturbed oscillators [J].
Franco, J. M. ;
Gomez, I. .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2014, 260 :482-493
[36]   CANONICAL RUNGE-KUTTA-NYSTROM METHODS OF ORDER-5 AND ORDER-6 [J].
OKUNBOR, DI ;
SKEEL, RD .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 1994, 51 (03) :375-382
[37]   New modified Runge-Kutta-Nystrom methods for the numerical integration of the Schrodinger equation [J].
Kalogiratou, Z. ;
Monovasilis, Th. ;
Simos, T. E. .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2010, 60 (06) :1639-1647
[38]   Computation of the eigenvalues of the Schrodinger equation by exponentially-fitted Runge-Kutta-Nystrom methods [J].
Kalogiratou, Z. ;
Monovasilis, Th. ;
Simos, T. E. .
COMPUTER PHYSICS COMMUNICATIONS, 2009, 180 (02) :167-176
[39]   Exponentially-fitted Runge-Kutta-Nystrom method for the numerical solution of initial-value problems with oscillating solutions [J].
Simos, TE .
APPLIED MATHEMATICS LETTERS, 2002, 15 (02) :217-225
[40]   Computation of the eigenvalues of the schrodinger equation by exponentially-fitted Runge-Kutta-nystrom methods [J].
Monovasilis, Th. ;
Kalogiratou, Z. ;
Simos, T. E. .
NUMERICAL ANALYSIS AND APPLIED MATHEMATICS, 2007, 936 :372-+