A Fourth Order Modified Trigonometrically Fitted Symplectic Runge-Kutta-Nystrom method

被引:0
作者
Kalogiratou, Z. [1 ]
Monovasilis, Th. [2 ]
Simos, T. E. [3 ,4 ]
机构
[1] Technol Educ Inst Western Macedonia Kastoria, Dept Informat & Comp Technol, POB 30, Kastoria 52100, Greece
[2] Tech Educat Inst Western Macedonia, Dept Int Trade, Kastoria 52100, Greece
[3] King Saud Univ, Coll Sci, Dept Math, Riyadh 11451, Saudi Arabia
[4] Univ Peloponnese, Dept Comp Sci & Technol, Lab Computat Sci, Tripolis 22100, Greece
来源
11TH INTERNATIONAL CONFERENCE OF NUMERICAL ANALYSIS AND APPLIED MATHEMATICS 2013, PTS 1 AND 2 (ICNAAM 2013) | 2013年 / 1558卷
关键词
Runge Kutta Nystrom methods; Symplectic methods; Hamiltonian Systems; Exponential Fitting;
D O I
10.1063/1.4825719
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this work we construct a modified trigonometrically fitted symplectic Runge Kutta Nystrom method based on the forth order five stages method of Calvo and Sanz-Serna. We apply the new method on the numerical integration of the two-body problem.
引用
收藏
页码:1176 / 1180
页数:5
相关论文
共 50 条
  • [21] A Fifth Order Phase-Fitted Runge-Kutta-Nystrom Method for Periodic Initial Value Problems
    Mohamad, M.
    Senu, N.
    Suleiman, M.
    Ismail, F.
    INTERNATIONAL CONFERENCE ON MATHEMATICAL SCIENCES AND STATISTICS 2013 (ICMSS2013), 2013, 1557 : 229 - 232
  • [22] Symplectic Runge-Kutta-Nystrom Methods with Phase-Lag Order Six and Infinity
    Kalogiratou, Z.
    Monovasilis, Th.
    Simos, T. E.
    NUMERICAL ANALYSIS AND APPLIED MATHEMATICS, VOLS I-III, 2010, 1281 : 694 - +
  • [23] Embedded exponentially fitted Runge-Kutta-Nystrom method for the numerical solution of orbital problems
    Van de Vyver, Hans
    NEW ASTRONOMY, 2006, 11 (08) : 577 - 587
  • [24] A family of trigonometrically fitted partitioned Runge-Kutta symplectic methods
    Monovasilis, Th.
    Kalogiratou, Z.
    Simos, T. E.
    APPLIED MATHEMATICS AND COMPUTATION, 2009, 209 (01) : 91 - 96
  • [25] A modified phase-fitted and amplification-fitted Runge-Kutta-Nystrom method for the numerical solution of the radial Schrodinger equation
    Papadopoulos, D. F.
    Anastassi, Z. A.
    Simos, T. E.
    JOURNAL OF MOLECULAR MODELING, 2010, 16 (08) : 1339 - 1346
  • [26] High order symplectic integrators based on continuous-stage Runge-Kutta-Nystrom methods
    Tang, Wensheng
    Sun, Yajuan
    Zhang, Jingjing
    APPLIED MATHEMATICS AND COMPUTATION, 2019, 361 : 670 - 679
  • [27] Some procedures for the construction of high-order exponentially fitted Runge-Kutta-Nystrom methods of explicit type
    Franco, J. M.
    Gomez, I.
    COMPUTER PHYSICS COMMUNICATIONS, 2013, 184 (04) : 1310 - 1321
  • [28] A SINGLY DIAGONALLY IMPLICIT RUNGE-KUTTA-NYSTROM METHOD WITH DISPERSION OF HIGH ORDER
    Senu, N.
    Suleiman, M.
    Ismail, F.
    Othman, M.
    IAENG TRANSACTIONS ON ENGINEERING TECHNOLOGIES, VOL 7, 2012, : 116 - 129
  • [29] An exponentially fitted 6(4) pair of explicit Runge-Kutta-Nystrom methods
    Kalogiratou, Z.
    Monovasllls, Th.
    Simos, T. E.
    COMPUTATION IN MODERN SCIENCE AND ENGINEERING VOL 2, PTS A AND B, 2007, 2 : 1253 - +
  • [30] A Fitted Runge-Kutta-Nystrom Method with Six Stages for the Integration of the Two-Body Problem
    Kosti, A. A.
    Anastassi, Z. A.
    Simos, T. E.
    NUMERICAL ANALYSIS AND APPLIED MATHEMATICS ICNAAM 2011: INTERNATIONAL CONFERENCE ON NUMERICAL ANALYSIS AND APPLIED MATHEMATICS, VOLS A-C, 2011, 1389