Perron's theorem for linear impulsive differential equations with distributed delay

被引:32
作者
Akhmet, M. U.
Alzabut, J. [1 ]
Zafer, A.
机构
[1] Cankaya Univ, Dept Math & Comp Sci, TR-06530 Ankara, Turkey
[2] Middle E Tech Univ, Dept Math, TR-06531 Ankara, Turkey
关键词
perron condition; stability; adjoint; impulse; distributed delay;
D O I
10.1016/j.cam.2005.06.004
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper it is shown that under a Perron condition trivial solution of linear impulsive differential equation with distributed delay is uniformly asymptotically stable. (c) 2005 Elsevier B.V. All rights reserved.
引用
收藏
页码:204 / 218
页数:15
相关论文
共 20 条
[1]   I-optimal curve for impulsive Lotka-Volterra predator-prey model [J].
Angelova, J ;
Dishliev, A ;
Nenov, S .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2002, 43 (10-11) :1203-1218
[2]   EXPONENTIAL STABILITY OF LINEAR DELAY IMPULSIVE DIFFERENTIAL-EQUATIONS [J].
ANOKHIN, A ;
BEREZANSKY, L ;
BRAVERMAN, E .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1995, 193 (03) :923-941
[3]  
AZBELEV NV, 1987, DIFF EQUAT+, V23, P493
[4]  
Bellman R., 1963, DIFFERENTIAL DIFFERE
[5]   BOUNDEDNESS AND STABILITY OF IMPULSIVELY PERTURBED SYSTEMS IN A BANACH-SPACE [J].
BEREZANSKY, L ;
BRAVERMAN, E .
INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 1994, 33 (10) :2075-2090
[6]  
Bohl P, 1913, J REINE ANGEW MATH, V144, P284
[7]  
Gusarenko SA., 1989, Differ. Equ, V25, P1480
[8]  
Halanay A., 1968, QUALITATIVE THEORY I
[9]  
Halanay A., 1966, DIFFERENTIAL EQUATIO
[10]  
HALE JK, 1966, INTRO FUNCTIONAL DIF