A deep learning algorithm for modeling and forecasting of COVID-19 in five worst affected states of India

被引:30
作者
Farooq, Junaid [1 ]
Bazaz, Mohammad Abid [1 ]
机构
[1] Natl Inst Technol Srinagar, Dept Elect Engn, Srinagar, Jammu & Kashmir, India
关键词
Covid-19; Incremental learning; ANN; Forecasting; TRANSMISSION DYNAMICS; INFLUENZA;
D O I
10.1016/j.aej.2020.09.037
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
In this paper, deep learning is employed to propose an Artificial Neural Network (ANN) based online incremental learning technique for developing an adaptive and non-intrusive analytical model of Covid-19 pandemic to analyze the temporal dynamics of the disease spread. The model is able to intelligently adapt to new ground realities in real-time eliminating the need to retrain the model from scratch every time a new data set is received from the continuously evolving training data. The model is validated with the historical data and a forecast of the disease spread for 30-days is given in the five worst affected states of India. (C) 2020 The Authors. Published by Elsevier B.V. on behalf of Faculty of Engineering, Alexandria University.
引用
收藏
页码:587 / 596
页数:10
相关论文
共 21 条
[1]  
Alahari, 2018, LECT NOTES COMPUTER
[2]  
Bouchachia A, 2007, IEEE INT CONF FUZZY, P1811
[3]  
Brauer F, 2008, LECT NOTES MATH, V1945, P19
[4]   Transmission of influenza: Implications for control in health care settings [J].
Bridges, CB ;
Kuehnert, MJ ;
Hall, CB .
CLINICAL INFECTIOUS DISEASES, 2003, 37 (08) :1094-1101
[5]   A 'small-world-like' model for comparing interventions aimed at preventing and controlling influenza pandemics [J].
Carrat, Fabrice ;
Luong, Julie ;
Lao, Herve ;
Salle, Anne-Violaine ;
Lajaunie, Christian ;
Wackernagel, Hans .
BMC MEDICINE, 2006, 4 (1)
[6]   A Bayesian MCMC approach to study transmission of influenza:: application to household longitudinal data [J].
Cauchemez, S ;
Carrat, F ;
Viboud, C ;
Valleron, AJ ;
Boëlle, PY .
STATISTICS IN MEDICINE, 2004, 23 (22) :3469-3487
[7]   Modeling influenza epidemics and pandemics: insights into the future of swine flu (H1N1) [J].
Coburn, Brian J. ;
Wagner, Bradley G. ;
Blower, Sally .
BMC MEDICINE, 2009, 7
[8]   Multisystem Inflammatory Syndrome in US Children and Adolescents [J].
Feldstein, Leora R. ;
Rose, Erica B. ;
Horwitz, Steven M. ;
Collins, Jennifer P. ;
Newhams, Margaret M. ;
Son, Mary Beth F. ;
Newburger, Jane W. ;
Kleinman, Lawrence C. ;
Heidemann, Sabrina M. ;
Martin, Amarilis A. ;
Singh, Aalok R. ;
Li, Simon ;
Tarquinio, Keiko M. ;
Jaggi, Preeti ;
Oster, Matthew E. ;
Zackai, Sheemon P. ;
Gillen, Jennifer ;
Ratner, Adam J. ;
Walsh, Rowan F. ;
Fitzgerald, Julie C. ;
Keenaghan, Michael A. ;
Alharash, Hussam ;
Doymaz, Sule ;
Clouser, Katharine N. ;
Giuliano, John S. ;
Gupta, Anjali ;
Parker, Robert M. ;
Maddux, Aline B. ;
Havalad, Vinod ;
Ramsingh, Stacy ;
Bukulmez, Hulya ;
Bradford, Tamara T. ;
Smith, Lincoln S. ;
Tenforde, Mark W. ;
Carroll, Christopher L. ;
Riggs, Becky J. ;
Gertz, Shira J. ;
Daube, Ariel ;
Lansell, Amanda ;
Coronado Munoz, Alvaro ;
Hobbs, Charlotte V. ;
Marohn, Kimberly L. ;
Halasa, Natasha B. ;
Patel, Manish M. ;
Randolph, Adrienne G. .
NEW ENGLAND JOURNAL OF MEDICINE, 2020, 383 (04) :334-346
[9]  
Gepperth A., 2016, ESANN 2016 24 EUR S
[10]   Contribution to the mathematical theory of epidemics [J].
Kermack, WO ;
McKendrick, AG .
PROCEEDINGS OF THE ROYAL SOCIETY OF LONDON SERIES A-CONTAINING PAPERS OF A MATHEMATICAL AND PHYSICAL CHARACTER, 1927, 115 (772) :700-721