Surface States in Ternary CdSSe Quantum Dot Solar Cells

被引:4
|
作者
Chen, Zhenhua [1 ]
Li, Hui [2 ]
Zhang, Xiangzhi [1 ]
Zhang, Lijuan [1 ]
Yu, Huaina [1 ]
Li, Wenqin [1 ]
Xu, Zijian [1 ]
Wang, Yong [1 ]
Tai, Renzhong [1 ]
机构
[1] Chinese Acad Sci, Shanghai Inst Appl Phys, Shanghai Synchrotron Radiat Facil, Shanghai 201800, Peoples R China
[2] Donghua Univ, Dept Appl Phys, Shanghai 201620, Peoples R China
基金
美国国家科学基金会;
关键词
Surface States; Ternary; Quantum Dot; Solar Cell; Synchrotron; X-RAY-ABSORPTION; TIO2; FILMS; DYE; SIZE; RECOMBINATION; PERFORMANCE; EFFICIENCY;
D O I
10.1166/jnn.2017.12629
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Ternary CdSSe quantum dot-sensitized solar cells (QDSCs) have demonstrated advantages such as wide absorption ranges and tunable band structures. However, the oxygen additives absorbed on such multicomponent quantum dot (QD) surfaces induce band bending at the TiO2/CdSSe interface and prevent charge transport in QDSCs, as determined via X-ray photoelectron spectroscopy (XPS) and synchrotron-based X-ray Absorption Near-Edge Structure (XANES) analysis. Annealing of TiO2/CdSSe QDs photoanodes was conducted at different temperatures under Ar atmospheres to eliminate oxygen additives and interfacial band bending. The short-circuit current (Jsc) of the annealed ternary CdSSe QDSCs is obviously improved, whereas the TiCl4 treatment and MgO coating of the TiO2 nanocrystals are assisted by the annealing to compensate for the loss of opencircuit voltage (V-oc) and fill factor (FF). Ternary CdSSe QDSCs with efficiencies of 4.72% have been achieved using the optimized
引用
收藏
页码:1373 / 1380
页数:8
相关论文
共 50 条
  • [31] Colloidal Quantum Dot Solar Cells Exploiting Hierarchical Structuring
    Labelle, Andre J.
    Thon, Susanna M.
    Masala, Silvia
    Adachi, Michael M.
    Dong, Haopeng
    Farahani, Maryam
    Ip, Alexander H.
    Fratalocchi, Andrea
    Sargent, Edward H.
    NANO LETTERS, 2015, 15 (02) : 1101 - 1108
  • [32] Suppress the Charge Recombination in Quantum Dot Sensitized Solar Cells by Construct the Al-treated TiO2/TiO2 NRAs Heterojunctions
    Qiu, Qingqing
    Zhao, Liwei
    Li, Shuo
    Wang, Dejun
    Xu, Lingling
    Lin, Yanhong
    Xie, Tengfeng
    CHEMISTRYSELECT, 2016, 1 (18): : 5936 - 5943
  • [33] CdS quantum dots grown by in situ chemical bath deposition for quantum dot-sensitized solar cells
    Jung, Sung Woo
    Kim, Jae-Hong
    Kim, Hyunsoo
    Choi, Chel-Jong
    Ahn, Kwang-Soon
    JOURNAL OF APPLIED PHYSICS, 2011, 110 (04)
  • [34] Quantum Dot Solar Cells
    Bedi, Guneet
    Singh, Rajendra
    2017 IEEE 17TH INTERNATIONAL CONFERENCE ON NANOTECHNOLOGY (IEEE-NANO), 2017, : 225 - 229
  • [35] Quantum dot based molecular solar cells
    Albero, Josep
    Clifford, John N.
    Palomares, Emilio
    COORDINATION CHEMISTRY REVIEWS, 2014, 263 : 53 - 64
  • [36] QUANTUM DOT-SENSITIZED SOLAR CELLS
    Ferreira Vitoreti, Ana Beatriz
    Correa, Letcia Bernardes
    Raphael, Ellen
    Patrocinio, Antonio Otavio T.
    Nogueira, Ana Flavia
    Schiavon, Marco Antonio
    QUIMICA NOVA, 2017, 40 (04): : 436 - 446
  • [37] Monolithic quantum dot sensitized solar cells
    Samadpour, M.
    Ghane, Z.
    Ghazyani, N.
    Tajabadi, F.
    Taghavinia, N.
    JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2013, 46 (48)
  • [38] Quantum Dot Antennas for Photoelectrochemical Solar Cells
    Buhbut, Sophia
    Itzhakov, Stella
    Oron, Dan
    Zaban, Arie
    JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2011, 2 (15): : 1917 - 1924
  • [39] Analysis of MultiLayer Quantum Dot for Solar Cells
    Kumar, Prateek
    Anurag
    Singh, Balwinder
    2016 8TH INTERNATIONAL CONFERENCE ON COMPUTATIONAL INTELLIGENCE AND COMMUNICATION NETWORKS (CICN), 2016, : 553 - 556
  • [40] Advanced Architecture for Colloidal PbS Quantum Dot Solar Cells Exploiting a CdSe Quantum Dot Buffer Layer
    Zhao, Tianshuo
    Goodwin, Earl D.
    Guo, Jiacen
    Wang, Han
    Diroll, Benjamin T.
    Murray, Christopher B.
    Kagan, Cherie R.
    ACS NANO, 2016, 10 (10) : 9267 - 9273