Predicting Age From Brain EEG Signals-A Machine Learning Approach

被引:84
|
作者
Al Zoubi, Obada [1 ,2 ]
Wong, Chung Ki [1 ]
Kuplicki, Rayus T. [1 ]
Yeh, Hung-wen [1 ]
Mayeli, Ahmad [1 ,2 ]
Refai, Hazem [2 ]
Paulus, Martin [1 ]
Bodurka, Jerzy [1 ,3 ]
机构
[1] Laureate Inst Brain Res, Tulsa, OK 74136 USA
[2] Univ Oklahoma, Dept Elect & Comp Engn, Tulsa, OK USA
[3] Univ Oklahoma, Stephenson Sch Biomed Engn, Norman, OK 73019 USA
来源
FRONTIERS IN AGING NEUROSCIENCE | 2018年 / 10卷
基金
美国国家卫生研究院;
关键词
aging; human brain; EEG; machine learning; feature extraction; BrainAGE; CHILDREN; ARTIFACT; BLIND; SEX;
D O I
10.3389/fnagi.2018.00184
中图分类号
R592 [老年病学]; C [社会科学总论];
学科分类号
03 ; 0303 ; 100203 ;
摘要
Objective: The brain age gap estimate (BrainAGE) is the difference between the estimated age and the individual chronological age. BrainAGE was studied primarily using MRI techniques. EEG signals in combination with machine learning (ML) approaches were not commonly used for the human age prediction, and BrainAGE. We investigated whether age-related changes are affecting brain EEG signals, and whether we can predict the chronological age and obtain BrainAGE estimates using a rigorous ML framework with a novel and extensive EEG features extraction. Methods: EEG data were obtained from 468 healthy, mood/anxiety, eating and substance use disorder participants (297 females) from the Tulsa-1000, a naturalistic longitudinal study based on Research Domain Criteria framework. Five sets of preprocessed EEG features across channels and frequency bands were used with different ML methods to predict age. Using a nested-cross-validation (NCV) approach and stack-ensemble learning from EEG features, the predicted age was estimated. The important features and their spatial distributions were deduced. Results: The stack-ensemble age prediction model achieved R-2 = 0.37 (0.06), Mean Absolute Error (MAE) = 6.87(0.69) and RMSE = 8.46(0.59) in years. The age and predicted age correlation was r = 0.6. The feature importance revealed that age predictors are spread out across different feature types. The NCV approach produced a reliable age estimation, with features consistent behavior across different folds. Conclusion: Our rigorous ML framework and extensive EEG signal features allow a reliable estimation of chronological age, and BrainAGE. This general framework can be extended to test EEG association with and to predict/study other physiological relevant responses.
引用
收藏
页数:12
相关论文
共 50 条
  • [21] Towards Predicting Task Performance from EEG Signals
    Papakostas, Michalis
    Tsiakas, Konstantinos
    Giannakopoulos, Theodoros
    Makedon, Fillia
    2017 IEEE INTERNATIONAL CONFERENCE ON BIG DATA (BIG DATA), 2017, : 4423 - 4425
  • [22] Biomarkers of Immersion in Virtual Reality Based on Features Extracted from the EEG Signals: A Machine Learning Approach
    Tadayyoni, Hamed
    Campos, Michael S. Ramirez
    Quevedo, Alvaro Joffre Uribe
    Murphy, Bernadette A.
    BRAIN SCIENCES, 2024, 14 (05)
  • [23] Emotion recognition from EEG signals using machine learning model
    Akshay, K. R.
    Sundar, Sumod
    Shanir, Muhammed P. P.
    2022 5TH INTERNATIONAL CONFERENCE ON MULTIMEDIA, SIGNAL PROCESSING AND COMMUNICATION TECHNOLOGIES (IMPACT), 2022,
  • [24] Using machine learning to reveal the population vector from EEG signals
    Kobler, Reinmar J.
    Almeida, Ines
    Sburlea, Andreea, I
    Mueller-Putz, Gernot R.
    JOURNAL OF NEURAL ENGINEERING, 2020, 17 (02)
  • [25] Comparison of Machine Learning Techniques Based Brain Source Localization Using EEG Signals
    Jatoi, Munsif Ali
    Dharejo, Fayaz Ali
    Teevino, Sadam Hussain
    CURRENT MEDICAL IMAGING, 2021, 17 (01) : 64 - 72
  • [26] Stress Detection from Different Environments for VIP Using EEG Signals and Machine Learning Algorithms
    Karim, Mohammad Safkat
    Al Rafsan, Abdullah
    Surovi, Tahmina Rahman
    Amin, Md Hasibul
    Parvez, Mohammad Zavid
    INTELLIGENT HUMAN COMPUTER INTERACTION, PT I, 2021, 12615 : 163 - 173
  • [27] Novel Features Extraction From EEG Signals for Epilepsy Detection Using Machine Learning Model
    Pandya, Vandana
    Shukla, Urvashi P.
    Joshi, Amit M.
    IEEE SENSORS LETTERS, 2023, 7 (10)
  • [28] Cognitive Workload Recognition Using EEG Signals and Machine Learning: A Review
    Zhou, Yueying
    Huang, Shuo
    Xu, Ziming
    Wang, Pengpai
    Wu, Xia
    Zhang, Daoqiang
    IEEE TRANSACTIONS ON COGNITIVE AND DEVELOPMENTAL SYSTEMS, 2022, 14 (03) : 799 - 818
  • [29] Automatic Detection of Cursor Movements from the EEG Signals via Deep Learning Approach
    Polat, Hasan
    Ozerdem, Mehmet Sirac
    2020 5TH INTERNATIONAL CONFERENCE ON COMPUTER SCIENCE AND ENGINEERING (UBMK), 2020, : 327 - 332
  • [30] Prediction of Sleep Apnea Using EEG Signals and Machine Learning Algorithms
    Onargan, Aysu
    Gavcar, Busra
    Caliskan, Gulizar
    Akan, Aydin
    TIP TEKNOLOJILERI KONGRESI (TIPTEKNO'21), 2021,