Pole-Converging Intrastage Bandwidth Extension Technique for Wideband Amplifiers

被引:82
作者
Feng, Guangyin [1 ]
Boon, Chirn Chye [1 ]
Meng, Fanyi [2 ]
Yi, Xiang [1 ]
Yang, Kaituo [1 ]
Li, Chenyang [1 ]
Luong, Howard C. [3 ]
机构
[1] Nanyang Technol Univ, Sch Elect & Elect Engn, IC Design Ctr Excellence, VIRTUS, Singapore 639798, Singapore
[2] Univ Elect Sci & Technol China, Sch Phys Elect, Chengdu 610054, Peoples R China
[3] Hong Kong Univ Sci & Technol, Dept Elect & Comp Engn, Hong Kong, Hong Kong, Peoples R China
关键词
Broadband amplifiers; bandwidth extension; CMOS amplifiers; frequency compensation; gain boosting; gain flatness; low-noise amplifiers (LNA); millimeter-wave (mm-wave) integrated circuits; pole converging; transformer feedback; LOW-NOISE AMPLIFIER; RECEIVERS; DESIGN; LNAS;
D O I
10.1109/JSSC.2016.2641459
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
To overcome limitations on bandwidth extension in conventional design techniques, a novel pole-converging technique with transformer feedback for intrastage bandwidth extension is proposed and analyzed in this paper. For verification, a three-stage cascode low-noise amplifier (LNA) based on the pole converging and negative drain-source transformer feedback is designed and implemented in a 65-nm CMOS technology. Consuming 27 mW dc power from a 1.8 V supply, the fabricated prototype exhibits peak power gain of 18.5 dB, minimum noise figure of 5.5 dB, 3-dB bandwidth of 30 GHz, and fractional bandwidth of 38.7%. The bandwidth of the three-stage cascode LNA is significantly extended without increasing power consumption and die size.
引用
收藏
页码:769 / 780
页数:12
相关论文
共 35 条
[11]   A 100-GHz 0.21-K NETD 0.9-mW/pixel Charge-Accumulation Super-Regenerative Receiver in 65-nm CMOS [J].
Feng, Guangyin ;
Boon, Chirn Chye ;
Meng, Fanyi ;
Yi, Xiang .
IEEE MICROWAVE AND WIRELESS COMPONENTS LETTERS, 2016, 26 (07) :531-533
[12]   An 88.5-110 GHz CMOS Low-Noise Amplifier for Millimeter-Wave Imaging Applications [J].
Feng, Guangyin ;
Boon, Chirn Chye ;
Meng, Fanyi ;
Yi, Xiang ;
Li, Chenyang .
IEEE MICROWAVE AND WIRELESS COMPONENTS LETTERS, 2016, 26 (02) :134-136
[13]   Millimeter-Wave Low-Noise Amplifier Design in 28-nm Low-Power Digital CMOS [J].
Fritsche, David ;
Tretter, Gregor ;
Carta, Corrado ;
Ellinger, Frank .
IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, 2015, 63 (06) :1910-1922
[14]   Design and Analysis of a W-Band SiGe Direct-Detection-Based Passive Imaging Receiver [J].
Gilreath, Leland ;
Jain, Vipul ;
Heydari, Payam .
IEEE JOURNAL OF SOLID-STATE CIRCUITS, 2011, 46 (10) :2240-2252
[15]   A CMOS Distributed Amplifier With Distributed Active Input Balun Using GBW and Linearity Enhancing Techniques [J].
Jahanian, Amin ;
Heydari, Payam .
IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, 2012, 60 (05) :1331-1341
[16]   A Novel Distributed Amplifier With High Gain, Low Noise, and High Output Power in 0.18-μm CMOS Technology [J].
Kao, Jui-Chih ;
Chen, Ping ;
Huang, Pin-Cheng ;
Wang, Huei .
IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, 2013, 61 (04) :1533-1542
[17]   A wideband W-band receiver front-end in 65-nm CMOS [J].
Khanpour, Mehdi ;
Tang, Keith W. ;
Garcia, Patrice ;
Voinigescu, Sorin P. .
IEEE JOURNAL OF SOLID-STATE CIRCUITS, 2008, 43 (08) :1717-1730
[18]  
Leung H. C., 2012, P IEEE RAD FREQ INT, P17
[19]   Gm-boosted common-gate LNA and differential colpitts VCO/QVCO in 0.18-μm CMOS [J].
Li, XY ;
Shekhar, S ;
Allstot, DJ .
IEEE JOURNAL OF SOLID-STATE CIRCUITS, 2005, 40 (12) :2609-2619
[20]   Broadband Millimeter-Wave LNAs (47-77 GHz and 70-140 GHz) Using a T-Type Matching Topology [J].
Liu, Gang ;
Schumacher, Hermann .
IEEE JOURNAL OF SOLID-STATE CIRCUITS, 2013, 48 (09) :2022-2029