The lattice Boltzmann advection-diffusion model revisited

被引:134
作者
Chopard, B. [1 ]
Falcone, J. L. [1 ]
Latt, J. [2 ]
机构
[1] Univ Geneva, CH-1211 Geneva 4, Switzerland
[2] Tufts Univ, Medford, MA 02155 USA
关键词
EQUATIONS;
D O I
10.1140/epjst/e2009-01035-5
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Advection-diffusion processes can be simulated by the Lattice Boltzmann method. Two formulations have been proposed in the literature. We show that they are not fully correct (only first order accurate). A new formulation is proposed, which is shown to produce better results, both from the point of view of the Chapman-Enskog expansion or when comparing simulations with an exact time-dependent solution of the advection-diffusion equation.
引用
收藏
页码:245 / 249
页数:5
相关论文
共 9 条
[1]  
Chopard B., 1998, Cellular Automata Modeling of Physical Systems
[2]   LATTICE BHATNAGAR-GROSS-KROOK MODELS FOR MISCIBLE FLUIDS [J].
FLEKKOY, EG .
PHYSICAL REVIEW E, 1993, 47 (06) :4247-4257
[3]   Fully Lagrangian and Lattice Boltzmann methods for the advection-diffusion equation [J].
Guo Z.L. ;
Shi B.C. ;
Wang N.C. .
Journal of Scientific Computing, 1999, 14 (3) :291-300
[4]  
Latt J, 2007, THESIS U GENEVA SWIT
[5]  
Shi BC, 2007, LECT NOTES COMPUT SC, V4487, P818
[6]  
Succi S., 2001, The lattice Boltzmann equation: for fluid dynamics and beyond
[7]   Numerical schemes obtained from lattice Boltzmann equations for advection diffusion equations [J].
Suga, Shinsuke .
INTERNATIONAL JOURNAL OF MODERN PHYSICS C, 2006, 17 (11) :1563-1577
[8]   Convection-diffusion lattice Boltzmann scheme for irregular lattices [J].
van der Sman, RGM ;
Ernst, MH .
JOURNAL OF COMPUTATIONAL PHYSICS, 2000, 160 (02) :766-782
[9]  
WAGNER AC, COMMUNICATION