Transform a Kind of Positive Semi-Definite Quadratic Programming into Positive Definite Quadratic Programming

被引:0
作者
Wang, Mingyu [1 ]
机构
[1] Xian Univ Finance & Econ, Sch Informat, Xian, Peoples R China
来源
2012 THIRD INTERNATIONAL CONFERENCE ON THEORETICAL AND MATHEMATICAL FOUNDATIONS OF COMPUTER SCIENCE (ICTMF 2012) | 2013年 / 38卷
关键词
Quadratic Programming; Positive Definite; Positive Semi-Definite; Relaxation Method;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
For a kind of positive semi-definite quadratic programming, a method to transform the original problem into serial positive definite quadratic programming under certain conditions is described. Thus the positive semi-definite quadratic programming can be solved as positive definite quadratic programming. An iterative algorithm for solving sequence positive definite quadratic programming is constructed, and the algorithm can be stop in limited steps.
引用
收藏
页码:95 / 99
页数:5
相关论文
共 50 条
  • [31] Linear pencils and quadratic programming problems with a quadratic constraint
    Zerbo, Santiago Gonzalez
    Maestripieri, Alejandra
    Peria, Francisco Martinez
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2023, 665 : 12 - 35
  • [32] When is the Uvarov transformation positive definite?
    Matthias Humet
    Marc Van Barel
    Numerical Algorithms, 2012, 59 : 51 - 62
  • [33] Quadratic programming with transaction costs
    Best, Michael J.
    Hlouskova, Jaroslava
    COMPUTERS & OPERATIONS RESEARCH, 2008, 35 (01) : 18 - 33
  • [34] Quadratic Programming and Penalized Regression
    Smith, Andrew D. A. C.
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2013, 42 (07) : 1363 - 1372
  • [35] Quadratic Programming Feature Selection
    Rodriguez-Lujan, Irene
    Huerta, Ramon
    Elkan, Charles
    Santa Cruz, Carlos
    JOURNAL OF MACHINE LEARNING RESEARCH, 2010, 11 : 1491 - 1516
  • [36] When is the Uvarov transformation positive definite?
    Humet, Matthias
    Van Barel, Marc
    NUMERICAL ALGORITHMS, 2012, 59 (01) : 51 - 62
  • [37] Strictly positive definite correlation functions
    Dolloff, John
    Lofy, Brian
    Sussman, Alan
    Taylor, Charles
    SIGNAL PROCESSING, SENSOR FUSION, AND TARGET RECOGNITION XV, 2006, 6235
  • [38] Approximation algorithms for quadratic programming
    Fu, MY
    Luo, ZQ
    Ye, YY
    JOURNAL OF COMBINATORIAL OPTIMIZATION, 1998, 2 (01) : 29 - 50
  • [39] QUADRATIC-PROGRAMMING IS IN NP
    VAVASIS, SA
    INFORMATION PROCESSING LETTERS, 1990, 36 (02) : 73 - 77
  • [40] On the solution of quadratic programming problems
    Stefanov, Stefan M.
    JOURNAL OF INFORMATION & OPTIMIZATION SCIENCES, 2023, 44 (02) : 243 - 253