Free-energy calculations using classical molecular simulation: application to the determination of the melting point and chemical potential of a flexible RDX model

被引:22
作者
Sellers, Michael S. [1 ]
Lisal, Martin [2 ,3 ]
Brennan, John K. [1 ]
机构
[1] US Army, Res Lab, Weap & Mat Res Directorate, RDRL WML B, Aberdeen Proving Ground, MD 21005 USA
[2] ASCR, Lab Chem & Phys Aerosols, Inst Chem Proc Fundamentals, Vvi, Rozvojova 135-1, Prague 16502 6, Suchdol, Czech Republic
[3] Univ JE Purkyne, Dept Phys, Fac Sci, Ceske Mladeze 8, Usti Nad Labem 40096, Czech Republic
关键词
SOLID-LIQUID COEXISTENCE; ATOMISTIC SIMULATION; DYNAMICS SIMULATIONS; PHASE COEXISTENCE; INTEGRATION; SYSTEMS;
D O I
10.1039/c5cp06164d
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
We present an extension of various free-energy methodologies to determine the chemical potential of the solid and liquid phases of a fully-flexible molecule using classical simulation. The methods are applied to the Smith-Bharadwaj atomistic potential representation of cyclotrimethylene trinitramine (RDX), a well-studied energetic material, to accurately determine the solid and liquid phase Gibbs free energies, and the melting point (T-m). We outline an efficient technique to find the absolute chemical potential and melting point of a fully-flexible molecule using one set of simulations to compute the solid absolute chemical potential and one set of simulations to compute the solid-liquid free energy difference. With this combination, only a handful of simulations are needed, whereby the absolute quantities of the chemical potentials are obtained, for use in other property calculations, such as the characterization of crystal polymorphs or the determination of the entropy. Using the LAMMPS molecular simulator, the Frenkel and Ladd and pseudo-supercritical path techniques are adapted to generate 3rd order fits of the solid and liquid chemical potentials. Results yield the thermodynamic melting point T-m = 488.75 K at 1.0 atm. We also validate these calculations and compare this melting point to one obtained from a typical superheated simulation technique.
引用
收藏
页码:7841 / 7850
页数:10
相关论文
共 47 条
  • [1] Molecular dynamics simulations of hexahydro-1,3,5-trinitro-1,3,5-s-triazine (RDX) using a combined Sorescu-Rice-Thompson AMBER force field
    Agrawal, Paras M.
    Rice, Betsy M.
    Zheng, Lianqing
    Thompson, Donald L.
    [J]. JOURNAL OF PHYSICAL CHEMISTRY B, 2006, 110 (51) : 26185 - 26188
  • [2] Simulations of melting of polyatomic solids and nanoparticles
    Alavi, Saman
    Thompson, Donald L.
    [J]. MOLECULAR SIMULATION, 2006, 32 (12-13) : 999 - 1015
  • [3] [Anonymous], THERM SOURC DAT
  • [4] Free energy calculations for molecular solids using GROMACS
    Aragones, J. L.
    Noya, E. G.
    Valeriani, C.
    Vega, C.
    [J]. JOURNAL OF CHEMICAL PHYSICS, 2013, 139 (03)
  • [5] Note: Free energy calculations for atomic solids through the Einstein crystal/molecule methodology using GROMACS and LAMMPS
    Aragones, J. L.
    Valeriani, C.
    Vega, C.
    [J]. JOURNAL OF CHEMICAL PHYSICS, 2012, 137 (14)
  • [6] Bedrov D, 2002, J COMPUT-AIDED MATER, V8, P77
  • [7] Shock-induced transformations in crystalline RDX: A uniaxial constant-stress Hugoniostat molecular dynamics simulation study
    Bedrov, Dmitry
    Hooper, Justin B.
    Smith, Grant D.
    Sewell, Thomas D.
    [J]. JOURNAL OF CHEMICAL PHYSICS, 2009, 131 (03)
  • [8] Boulougouris GC, 1999, MOL PHYS, V96, P905, DOI 10.1080/00268979909483030
  • [10] Shock-induced shear bands in an energetic molecular crystal: Application of shock-front absorbing boundary conditions to molecular dynamics simulations
    Cawkwell, M. J.
    Sewell, Thomas D.
    Zheng, Lianqing
    Thompson, Donald L.
    [J]. PHYSICAL REVIEW B, 2008, 78 (01)