APOBEC3G cytidine deaminase association with coronavirus nucleocapsid protein

被引:20
作者
Wang, Shui-Mei
Wang, Chin-Tien [1 ]
机构
[1] Taipei Vet Gen Hosp, Dept Med Res & Educ, Taipei 11217, Taiwan
关键词
APOBEC3G; Coronavirus; SARS-CoV; HCoV-229E; HIV-1; Nucleocapsid; IMMUNODEFICIENCY-VIRUS TYPE-1; ACUTE RESPIRATORY SYNDROME; AMINO-ACID-RESIDUES; VIF PROTEIN; SARS CORONAVIRUS; RNA-BINDING; SELF-ASSOCIATION; GAG POLYPROTEIN; HIV-1; VIRIONS; VIRAL-RNA;
D O I
10.1016/j.virol.2009.03.010
中图分类号
Q93 [微生物学];
学科分类号
071005 ; 100705 ;
摘要
We previously reported that replacing HIV-1 nucleocapsid (NC) domain with SARS-CoV nucleocapsid (N) residues 2-213, 215-421, or 234-421 results in efficient virus-like particle (VLP) production at a level comparable to that of wild-type HIV-1. In this study we demonstrate that these chimeras are capable of packaging large amounts Of human APOBEC3G (hA3G), and that an HIV-1 Gag chimera containing the carboxyl-terminal half of human coronavirus 229E (HCoV-229E) N as a substitute for NC is capable of directing VLP assembly and efficiently packaging hA3G. When co-expressed with SARS-CoV N and M (membrane) proteins, hA3G was efficiently incorporated into SARS-CoV VLPs. Data from GST pull-down assays suggest that the N sequence involved in N-hA3G interactions is located between residues 86 and 302. Like HIV-1 NC, the SARS-CoV or HCoV-229E N-associated with hA3G depends on the presence of RNA, with the first linker region essential for hA3G packaging into both HIV-1 and SARS-CoV VLPs. The results raise the possibility that hA3G is capable of associating with different species of viral structural proteins through a potentially common, RNA-mediated mechanism. (C) 2009 Elsevier Inc. All rights reserved.
引用
收藏
页码:112 / 120
页数:9
相关论文
共 50 条
[21]   The C-terminal cytidine deaminase domain of APOBEC3G itself undergoes intersegmental transfer for a target search, as revealed by real-time NMR monitoring [J].
Kamba, Keisuke ;
Nagata, Takashi ;
Katahira, Masato .
PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2018, 20 (05) :2976-2981
[22]   Deaminase-Independent Inhibition of Parvoviruses by the APOBEC3A Cytidine Deaminase [J].
Narvaiza, Inigo ;
Linfesty, Daniel C. ;
Greener, Benjamin N. ;
Hakata, Yoshiyuki ;
Pintel, David J. ;
Logue, Eric ;
Landau, Nathaniel R. ;
Weitzman, Matthew D. .
PLOS PATHOGENS, 2009, 5 (05)
[23]   Aromatic disulfides as potential inhibitors against interaction between deaminase APOBEC3G and HIV infectivity factor [J].
Yan, Xiaoxuan ;
Chen, Chao ;
Wang, Chunxi ;
Lan, Wenxian ;
Wang, Jianguo ;
Cao, Chunyang .
ACTA BIOCHIMICA ET BIOPHYSICA SINICA, 2022, 54 (05) :725-735
[24]   Extensive mutagenesis experiments corroborate a structural model for the DNA deaminase domain of APOBEC3G [J].
Chen, Kuan-Ming ;
Martemyanova, Natalia ;
Lu, Yongjian ;
Shindo, Keisuke ;
Matsuo, Hiroshi ;
Harris, Reuben S. .
FEBS LETTERS, 2007, 581 (24) :4761-4766
[25]   Development of benzimidazole derivatives to inhibit HIV-1 replication through protecting APOBEC3G protein [J].
Pan, Ting ;
He, Xin ;
Chen, Bing ;
Chen, Hui ;
Geng, Guannan ;
Luo, Haihua ;
Zhang, Hui ;
Bai, Chuan .
EUROPEAN JOURNAL OF MEDICINAL CHEMISTRY, 2015, 95 :500-513
[26]   Expression of APOBEC3G in kidney cells [J].
Komohara, Y. ;
Suekane, S. ;
Noguchi, M. ;
Matsuoka, K. ;
Yamada, A. ;
Itoh, K. .
TISSUE ANTIGENS, 2007, 69 (01) :95-98
[27]   Complementary function of the two catalytic domains of APOBEC3G [J].
Navarro, F ;
Bollman, B ;
Chen, H ;
König, R ;
Yu, Q ;
Chiles, K ;
Landau, NR .
VIROLOGY, 2005, 333 (02) :374-386
[28]   Dimerization regulates both deaminase-dependent and deaminase-independent HIV-1 restriction by APOBEC3G [J].
Morse, Michael ;
Huo, Ran ;
Feng, Yuqing ;
Rouzina, Ioulia ;
Chelico, Linda ;
Williams, Mark C. .
NATURE COMMUNICATIONS, 2017, 8
[29]   Functional domains of APOBEC3G required for antiviral activity [J].
Li, JL ;
Potash, MJ ;
Volsky, DJ .
JOURNAL OF CELLULAR BIOCHEMISTRY, 2004, 92 (03) :560-572
[30]   Comparative analysis of the antiretroviral activity of APOBEC3G and APOBEC3F from primates [J].
Zennou, Veronique ;
Bieniasz, Paul D. .
VIROLOGY, 2006, 349 (01) :31-40