Realtime vision based multi-target-tracking with particle filters in automotive applications

被引:11
作者
Idler, Corvin [1 ]
Schweiger, Roland [3 ]
Paulus, Dietrich [1 ]
Maehlisch, Mirko [2 ]
Ritter, Werner [2 ]
机构
[1] Univ Koblenz Landau, Inst Computat Visualist, D-56070 Koblenz, Germany
[2] DaimlerChrysler AG, Res & Technol REI AI, D-89081 Ulm, Germany
[3] Univ Ulm, Dept Measurement, D-89069 Ulm, Germany
来源
2006 IEEE INTELLIGENT VEHICLES SYMPOSIUM | 2006年
关键词
D O I
10.1109/IVS.2006.1689626
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In the following we present a multi-instance-based multi-target-tracking method using particle filters. We developed a robust and flexible system capable of tracking an unknown and changing number of objects (vehicles) using early-vision image features. The system works in real time.
引用
收藏
页码:188 / +
页数:2
相关论文
共 25 条
[1]  
[Anonymous], BRIT MACH VIS C
[2]  
[Anonymous], 2003, HIGHLY STRUCTURED ST
[3]   A tutorial on particle filters for online nonlinear/non-Gaussian Bayesian tracking [J].
Arulampalam, MS ;
Maskell, S ;
Gordon, N ;
Clapp, T .
IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2002, 50 (02) :174-188
[4]  
BAEHRING D, 2003, WORKSH FAHR FAS2003, P9
[5]  
Broggi A, 2004, 2004 IEEE INTELLIGENT VEHICLES SYMPOSIUM, P310
[6]  
Collado JM, 2004, 2004 IEEE INTELLIGENT VEHICLES SYMPOSIUM, P572
[7]  
DELLAERT F, 1997, C INT TRANSP SYST IN, P72
[8]  
Doucet A., 2001, SEQUENTIAL MONTE CAR
[9]  
Doucet A., 1998, CUEDFINFENGTR310
[10]  
Egelhaaf JC, 2003, VDI BERICHT, V1768, P247