Local "superlinearity" and "sublinearity" for the p-Laplacian

被引:103
作者
de Figueiredo, Djairo G. [2 ]
Gossez, Jean-Pierre [1 ]
Ubilla, Pedro [3 ]
机构
[1] Univ Libre Bruxelles, Dept Math, B-1050 Brussels, Belgium
[2] Univ Estadual Campinas, IMECC, BR-13081970 Campinas, SP, Brazil
[3] Univ Santiago Chile, Santiago, Chile
基金
巴西圣保罗研究基金会;
关键词
p-Laplacian; Concave-convex nonlinearities; Critical exponent; C-0(1) versus W-0(1; p) local minimization; Strong comparison principle; C-1; C-alpha estimate; Upper-lower solutions; POSITIVE SOLUTIONS; SOBOLEV; CONVERGENCE; MINIMIZERS; EXISTENCE; PRINCIPLE;
D O I
10.1016/j.jfa.2009.04.001
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study the existence, nonexistence and multiplicity of positive solutions for a family of problems -Delta(p)u = f(lambda)(x, u), u is an element of W-0(1,p)(Omega), where Omega is a bounded domain n R-N, N > p, and lambda > 0 is a parameter. The family we consider includes the well-known nonlinearities of Ambrosetti-Brezis-Cerami type in a more general form, namely lambda a(x)u(q) + b(x)u(r), where 0 <= q < p - 1 < r <= p* - 1. Here the coefficient a(x) is assumed to be nonnegative but b(x) is allowed to change sign, even in the critical case. Preliminary results of independent interest include the extension to the p-Laplacian context of the Brezis-Nirenberg results on local minimization in W-0(1,p) and C-0(1), a C-1,C-alpha estimate for equations of the form -Delta(p)u = h(x, u) which h of critical growth, a strong comparison result for the p-Laplacian, and a variational approach to the method of upper-lower solutions for the p-Laplacian. (C) 2009 Elsevier Inc. All rights reserved.
引用
收藏
页码:721 / 752
页数:32
相关论文
共 31 条
[1]  
Allegretto W, 1998, NONLINEAR ANAL-THEOR, V32, P819
[2]   COMBINED EFFECTS OF CONCAVE AND CONVEX NONLINEARITIES IN SOME ELLIPTIC PROBLEMS [J].
AMBROSETTI, A ;
BREZIS, H ;
CERAMI, G .
JOURNAL OF FUNCTIONAL ANALYSIS, 1994, 122 (02) :519-543
[3]  
[Anonymous], 1988, THESIS U LIBRE BRUXE
[4]  
[Anonymous], 2000, Differ. Integral. Equ
[5]  
[Anonymous], 1993, MATH APPL BERLIN MAT
[6]   The Ambrosetti-Prodi problem for the p-laplace operator [J].
Arcoya, David ;
Ruiz, David .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2006, 31 (06) :849-865
[7]   SOME RESULTS ABOUT THE EXISTENCE OF A 2ND POSITIVE SOLUTION IN A QUASI-LINEAR CRITICAL PROBLEM [J].
AZORERO, JG ;
ALONSO, IP .
INDIANA UNIVERSITY MATHEMATICS JOURNAL, 1994, 43 (03) :941-957
[8]   Sobolev versus Holder local minimizers and global multiplicity for some quasilinear elliptic equations [J].
Azorero, JPG ;
Alonso, IP ;
Manfredi, JJ .
COMMUNICATIONS IN CONTEMPORARY MATHEMATICS, 2000, 2 (03) :385-404
[9]   ALMOST EVERYWHERE CONVERGENCE OF THE GRADIENTS OF SOLUTIONS TO ELLIPTIC AND PARABOLIC EQUATIONS [J].
BOCCARDO, L ;
MURAT, F .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1992, 19 (06) :581-597
[10]  
BREZIS H, 1993, CR ACAD SCI I-MATH, V317, P465