Bernoulli-Euler Beam Under Action of a Moving Thermal Source: Characteristics of the Dynamic Behavior

被引:6
|
作者
Morozov, N. F. [1 ,3 ]
Indeitsev, D. A. [1 ,2 ,3 ]
Lukin, A. V. [2 ]
Popov, I. A. [2 ]
Privalova, O. V. [2 ]
Semenov, B. N. [1 ,3 ]
Shtukin, L. V. [1 ,2 ]
机构
[1] Russian Acad Sci, Inst Problems Mech Engn, St Petersburg 199178, Russia
[2] Peter Great St Petersburg Polytech Univ, St Petersburg 195251, Russia
[3] St Petersburg State Univ, St Petersburg 199034, Russia
基金
俄罗斯科学基金会;
关键词
D O I
10.1134/S1028335819040050
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
The problem of a heating source acting on a certain part of a beam surface and moving along it with given speed is solved. It is shown that the most significant role in formation of the beam deflection under loading by a compression force is played by concentrated moments occurring at the moving boundary of the heating source. It is noted that for a source speed less than some critical value, the beam deflection is essentially nonmonotonic. In this case, the largest beam bending deflection occurs when the source speed reaches a value corresponding to the Euler critical force.
引用
收藏
页码:185 / 188
页数:4
相关论文
共 50 条
  • [1] Bernoulli-Euler Beam Under Action of a Moving Thermal Source: Characteristics of the Dynamic Behavior
    N. F. Morozov
    D. A. Indeitsev
    A. V. Lukin
    I. A. Popov
    O. V. Privalova
    B. N. Semenov
    L. V. Shtukin
    Doklady Physics, 2019, 64 : 185 - 188
  • [2] Stability of the Bernoulli-Euler Beam under the Action of a Moving Thermal Source
    Morozov, N. F.
    Indeitsev, D. A.
    Lukin, A. V.
    Popov, I. A.
    Privalova, O. V.
    Shtukin, L. V.
    DOKLADY PHYSICS, 2020, 65 (02) : 67 - 71
  • [3] Stability of the Bernoulli–Euler Beam under the Action of a Moving Thermal Source
    N. F. Morozov
    D. A. Indeitsev
    A. V. Lukin
    I. A. Popov
    O. V. Privalova
    L. V. Shtukin
    Doklady Physics, 2020, 65 : 67 - 71
  • [4] A new approach to modeling the dynamic response of Bernoulli-Euler beam under moving load
    Maximov, J. T.
    COUPLED SYSTEMS MECHANICS, 2014, 3 (03): : 247 - 265
  • [5] DYNAMIC RESPONSE OF AN INFINITE BERNOULLI-EULER BEAM
    SHEEHAN, JP
    DEBNATH, L
    NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1971, 18 (07): : 1062 - &
  • [6] Action of Moving Loads on the Bernoulli-Euler and Timoshenko Beams
    T. I. Zhdan
    Moscow University Mechanics Bulletin, 2019, 74 : 123 - 127
  • [7] Action of Moving Loads on the Bernoulli-Euler and Timoshenko Beams
    Zhdan, T. I.
    MOSCOW UNIVERSITY MECHANICS BULLETIN, 2019, 74 (05) : 123 - 127
  • [8] Dynamic analysis of Bernoulli-Euler beams with interval uncertainties under moving loads
    Giunta, Filippo
    Muscolino, Giuseppe
    Sofi, Alba
    Elishakoff, Isaac
    X INTERNATIONAL CONFERENCE ON STRUCTURAL DYNAMICS (EURODYN 2017), 2017, 199 : 2591 - 2596
  • [9] DYNAMIC-RESPONSE OF AN INFINITE BERNOULLI-EULER BEAM
    SHEEHAN, JP
    DEBNATH, L
    PURE AND APPLIED GEOPHYSICS, 1972, 97 (05) : 100 - &
  • [10] INFLUENCE OF MATERIAL DEFECTS ON THE DYNAMIC STABILITY OF THE BERNOULLI-EULER BEAM
    Sochacki, W.
    Garus, S.
    Garus, J.
    ARCHIVES OF METALLURGY AND MATERIALS, 2021, 66 (02) : 519 - 522