Crystal Structure and Biochemical Characterization of Xylose Isomerase from Piromyces sp.

被引:7
作者
Son, Hyeoncheol Francis [1 ,3 ]
Lee, Sun-Mi [2 ]
Kim, Kyung-Jin [1 ,3 ]
机构
[1] Kyungpook Natl Univ, Sch Life Sci, KNU Creat BioRes Grp, Daegu 41566, South Korea
[2] Korea Inst Sci & Technol, Clean Energy Res Ctr, Seoul 02792, South Korea
[3] Kyungpook Natl Univ, KNU Inst Microorganisms, Daegu 41566, South Korea
基金
新加坡国家研究基金会;
关键词
Pentose metabolism; D-xylose; xylose isomerase; Pyromyces sp E2; RECOMBINANT SACCHAROMYCES-CEREVISIAE; FUNCTIONAL EXPRESSION; ETHANOL-PRODUCTION; FERMENTATION;
D O I
10.4014/jmb.1711.11026
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Biofuel production using lignocellulosic biomass is gaining attention because it can be substituted for fossil fuels without competing with edible resources. However, because Saccharomyces cerevisiae does not have a D-xylose metabolic pathway, oxidoreductase or isomerase pathways must be introduced to utilize D-xylose from lignocellulosic biomass in S. cerevisiae. To elucidate the biochemical properties of xylose isomerase (XI) from Piromyces sp. E2 (PsXI), we determine its crystal structure in complex with substrate mimic glycerol. An amino-acid sequence comparison with other reported XIs and relative activity measurements using five kinds of divalent metal ions confirmed that PsXI belongs to class II XIs. Moreover kinetic analysis of PsXI was also performed using Mn2+, the preferred divalent metal ion for PsXI. In addition, the substrate-binding mode of PsXI could be predicted with the substrate mimic glycerol bound to the active site. These studies may provide structural information to enhance D-xylose utilization for biofuel production.
引用
收藏
页码:571 / 578
页数:8
相关论文
共 30 条
[1]   A genetic overhaul of Saccharomyces cerevisiae 424A(LNH-ST) to improve xylose fermentation [J].
Bera, Aloke K. ;
Ho, Nancy W. Y. ;
Khan, Aftab ;
Sedlak, Miroslav .
JOURNAL OF INDUSTRIAL MICROBIOLOGY & BIOTECHNOLOGY, 2011, 38 (05) :617-626
[2]   The synthetic integron: an in vivo genetic shuffling device [J].
Bikard, David ;
Julie-Galau, Stephane ;
Cambray, Guillaume ;
Mazel, Didier .
NUCLEIC ACIDS RESEARCH, 2010, 38 (15) :e153-e153
[3]   Functional Expression of a Bacterial Xylose Isomerase in Saccharomyces cerevisiae [J].
Brat, Dawid ;
Boles, Eckhard ;
Wiedemann, Beate .
APPLIED AND ENVIRONMENTAL MICROBIOLOGY, 2009, 75 (08) :2304-2311
[4]  
한병구, 2015, Biodesign, V3, P41
[5]   Coot:: model-building tools for molecular graphics [J].
Emsley, P ;
Cowtan, K .
ACTA CRYSTALLOGRAPHICA SECTION D-STRUCTURAL BIOLOGY, 2004, 60 :2126-2132
[6]   Metabolic engineering for pentose utilization in Saccharomyces cerevisiae [J].
Hahn-Haegerdal, Bdrbel ;
Karhumaa, Kaisa ;
Jeppsson, Marie ;
Gorwa-Grauslund, Marie F. .
BIOFUELS, 2007, 108 :147-177
[7]   Improvement of xylose uptake and ethanol production in recombinant Saccharomyces cerevisiae through an inverse metabolic engineering approach [J].
Jin, YS ;
Alper, H ;
Yang, YT ;
Stephanopoulos, G .
APPLIED AND ENVIRONMENTAL MICROBIOLOGY, 2005, 71 (12) :8249-8256
[8]   Bioconversion of lignocellulose: inhibitors and detoxification [J].
Jonsson, Leif J. ;
Alriksson, Bjorn ;
Nilvebrant, Nils-Olof .
BIOTECHNOLOGY FOR BIOFUELS, 2013, 6
[9]   Comparison of the xylose reductase-xylitol dehydrogenase and the xylose isomerase pathways for xylose fermentation by recombinant Saccharomyces cerevisiae [J].
Karhumaa, Kaisa ;
Garcia Sanchez, Rosa ;
Hahn-Hagerdal, Barbel ;
Gorwa-Grauslund, Marie-F .
MICROBIAL CELL FACTORIES, 2007, 6 (1)
[10]   Strain engineering of Saccharomyces cerevisiae for enhanced xylose metabolism [J].
Kim, Soo Rin ;
Park, Yong-Cheol ;
Jin, Yong-Su ;
Seo, Jin-Ho .
BIOTECHNOLOGY ADVANCES, 2013, 31 (06) :851-861