INTEGERS REPRESENTED BY x4 - y4 REVISITED

被引:0
作者
Bennett, Michael A. [1 ]
机构
[1] Univ British Columbia, Dept Math, Vancouver, BC V6T 1Z2, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
Diophantine equations; Frey curves; modularity; EQUATIONS;
D O I
10.1017/S0004972720000441
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We sharpen earlier work of Dabrowski on near-perfect power values of the quartic form x(4) - y(4), through appeal to Frey curves of various signatures and related techniques.
引用
收藏
页码:38 / 49
页数:12
相关论文
共 22 条
  • [1] On the Diophantine equation x4 - q4 = pyr
    Bajolet, Aurelien
    Dupuy, Benjamin
    Luca, Florian
    Togbe, Alain
    [J]. PUBLICATIONES MATHEMATICAE-DEBRECEN, 2011, 79 (3-4): : 269 - 282
  • [2] Ternary diophantine equations via galois representations and modular forms
    Bennett, MA
    Skinner, CM
    [J]. CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 2004, 56 (01): : 23 - 54
  • [3] Cao Z., 1999, C R MATH REP ACAD SC, V21, P23
  • [4] Concerning a simplification of the x(n)-A function in any area of functions.
    Capelli, A
    [J]. MATHEMATISCHE ANNALEN, 1901, 54 : 602 - 603
  • [5] On the integers represented by x4-y4
    Dabrowski, Andrzej
    [J]. BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2007, 76 (01) : 133 - 136
  • [6] ON THE EQUATIONS Z(M)=F(X,Y) AND AX(P)+BY(Q)=CZ(R)
    DARMON, H
    GRANVILLE, A
    [J]. BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 1995, 27 : 513 - 543
  • [7] Darmon H, 1997, J REINE ANGEW MATH, V490, P81
  • [8] Darmon H., 1993, CR ACAD SCI I-MATH, V15, P286
  • [9] Ivorra W, 2004, DISSERTATIONES MATH, V429
  • [10] Effective majorations for the generalized Fermat equation
    Kraus, A
    [J]. CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 1997, 49 (06): : 1139 - 1161