ACTIVITY-RELATIONSHIP MODELS;
LOCAL LAZY REGRESSION;
QSAR;
IMPROVE;
D O I:
10.1021/acs.jcim.0c00678
中图分类号:
R914 [药物化学];
学科分类号:
100701 ;
摘要:
While Gaussian process models are typically restricted to smaller data sets, we propose a variation which extends its applicability to the larger data sets common in the industrial drug discovery space, making it relatively novel in the quantitative structure-activity relationship (QSAR) field. By incorporating locality-sensitive hashing for fast nearest neighbor searches, the nearest neighbor Gaussian process model makes predictions with time complexity that is sub-linear with the sample size. The model can be efficiently built, permitting rapid updates to prevent degradation as new data is collected. Given its small number of hyperparameters, it is robust against overfitting and generalizes about as well as other common QSAR models. Like the usual Gaussian process model, it natively produces principled and well-calibrated uncertainty estimates on its predictions. We compare this new model with implementations of random forest, light gradient boosting, and k-nearest neighbors to highlight these promising advantages. The code for the nearest neighbor Gaussian process is available at https://github.com/Merck/nngp.
机构:
IRCCS, Ist Ric Farmacol Mario Negri, Dept Environm Hlth Sci, Lab Environm Chem & Toxicol, Via La Masa 19, I-20156 Milan, ItalyIRCCS, Ist Ric Farmacol Mario Negri, Dept Environm Hlth Sci, Lab Environm Chem & Toxicol, Via La Masa 19, I-20156 Milan, Italy
Toropova, Alla P.
Toropov, Andrey A.
论文数: 0引用数: 0
h-index: 0
机构:
IRCCS, Ist Ric Farmacol Mario Negri, Dept Environm Hlth Sci, Lab Environm Chem & Toxicol, Via La Masa 19, I-20156 Milan, ItalyIRCCS, Ist Ric Farmacol Mario Negri, Dept Environm Hlth Sci, Lab Environm Chem & Toxicol, Via La Masa 19, I-20156 Milan, Italy
机构:
S China Univ Technol, Coll Environm Sci & Engn, Guangzhou 510641, Peoples R ChinaS China Univ Technol, Coll Environm Sci & Engn, Guangzhou 510641, Peoples R China
Lu, Gui-Ning
Dang, Zhi
论文数: 0引用数: 0
h-index: 0
机构:
S China Univ Technol, Coll Environm Sci & Engn, Guangzhou 510641, Peoples R ChinaS China Univ Technol, Coll Environm Sci & Engn, Guangzhou 510641, Peoples R China
Dang, Zhi
Tao, Xue-Qin
论文数: 0引用数: 0
h-index: 0
机构:
S China Univ Technol, Coll Environm Sci & Engn, Guangzhou 510641, Peoples R ChinaS China Univ Technol, Coll Environm Sci & Engn, Guangzhou 510641, Peoples R China
Tao, Xue-Qin
Chen, Xiao-Peng
论文数: 0引用数: 0
h-index: 0
机构:
S China Univ Technol, Coll Environm Sci & Engn, Guangzhou 510641, Peoples R ChinaS China Univ Technol, Coll Environm Sci & Engn, Guangzhou 510641, Peoples R China
Chen, Xiao-Peng
Yi, Xiao-Yun
论文数: 0引用数: 0
h-index: 0
机构:
S China Univ Technol, Coll Environm Sci & Engn, Guangzhou 510641, Peoples R ChinaS China Univ Technol, Coll Environm Sci & Engn, Guangzhou 510641, Peoples R China
Yi, Xiao-Yun
Yang, Chen
论文数: 0引用数: 0
h-index: 0
机构:
S China Univ Technol, Coll Environm Sci & Engn, Guangzhou 510641, Peoples R ChinaS China Univ Technol, Coll Environm Sci & Engn, Guangzhou 510641, Peoples R China