Learning Local Implicit Fourier Representation for Image Warping

被引:4
作者
Lee, Jaewon [1 ]
Choi, Kwang Pyo [2 ]
Jin, Kyong Hwan [1 ]
机构
[1] Daegu Gyeongbuk Inst Sci & Technol DGIST, Daegu, South Korea
[2] Samsung Elect, Suwon, South Korea
来源
COMPUTER VISION - ECCV 2022, PT XVIII | 2022年 / 13678卷
关键词
Image warping; Implicit neural representation; Fourier features; Jacobian; Homography transform; Equirectangular projection (ERP); SUPERRESOLUTION;
D O I
10.1007/978-3-031-19797-0_11
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Image warping aims to reshape images defined on rectangular grids into arbitrary shapes. Recently, implicit neural functions have shown remarkable performances in representing images in a continuous manner. However, a standalone multi-layer perceptron suffers from learning high-frequency Fourier coefficients. In this paper, we propose a local texture estimator for image warping (LTEW) followed by an implicit neural representation to deform images into continuous shapes. Local textures estimated from a deep super-resolution (SR) backbone are multiplied by locally-varying Jacobian matrices of a coordinate transformation to predict Fourier responses of a warped image. Our LTEW-based neural function outperforms existing warping methods for asymmetricscale SR and homography transform. Furthermore, our algorithm well generalizes arbitrary coordinate transformations, such as homography transform with a large magnification factor and equirectangular projection (ERP) perspective transform, which are not provided in training. Our source code is available at https://github.com/jaewon- lee-b/ltew.
引用
收藏
页码:182 / 200
页数:19
相关论文
共 52 条
  • [21] Modeling the Perceptual Quality of Immersive Images Rendered on Head Mounted Displays: Resolution and Compression
    Huang, Mingkai
    Shen, Qiu
    Ma, Zhan
    Bovik, Alan Conrad
    Gupta, Praful
    Zhou, Rongbing
    Cao, Xun
    [J]. IEEE TRANSACTIONS ON IMAGE PROCESSING, 2018, 27 (12) : 6039 - 6050
  • [22] Jaderberg M, 2015, ADV NEUR IN, V28
  • [23] Local Implicit Grid Representations for 3D Scenes
    Jiang, Chiyu ''Max''
    Sud, Avneesh
    Makadia, Ameesh
    Huang, Jingwei
    Niessner, Matthias
    Funkhouser, Thomas
    [J]. 2020 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2020, : 6000 - 6009
  • [24] COTR: Correspondence Transformer for Matching Across Images
    Jiang, Wei
    Trulls, Eduard
    Hosang, Jan
    Tagliasacchi, Andrea
    Yi, Kwang Moo
    [J]. 2021 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2021), 2021, : 6187 - 6197
  • [25] CUBIC CONVOLUTION INTERPOLATION FOR DIGITAL IMAGE-PROCESSING
    KEYS, RG
    [J]. IEEE TRANSACTIONS ON ACOUSTICS SPEECH AND SIGNAL PROCESSING, 1981, 29 (06): : 1153 - 1160
  • [26] Kim J, 2016, PROC CVPR IEEE, P1637, DOI [10.1109/CVPR.2016.181, 10.1109/CVPR.2016.182]
  • [27] Kingma D P., 2014, P INT C LEARN REPR
  • [28] Local Texture Estimator for Implicit Representation Function
    Lee, Jaewon
    Jin, Kyong Hwan
    [J]. 2022 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2022), 2022, : 1928 - 1937
  • [29] Lee Y, 2019, P IEEECVF C COMPUTER, P0
  • [30] SwinIR: Image Restoration Using Swin Transformer
    Liang, Jingyun
    Cao, Jiezhang
    Sun, Guolei
    Zhang, Kai
    Van Gool, Luc
    Timofte, Radu
    [J]. 2021 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION WORKSHOPS (ICCVW 2021), 2021, : 1833 - 1844