Experimental study on water transport coefficient in Proton Exchange Membrane Fuel Cell

被引:48
|
作者
Colinart, T. [1 ]
Chenu, A. [1 ]
Didierjean, S. [1 ]
Lottin, O. [1 ]
Besse, S. [2 ]
机构
[1] Univ Nancy, CNRS, UMR 7563, LEMTA, F-54504 Vandoeuvre Les Nancy, France
[2] HELION Hydrogen Power, F-13545 Aix En Provence, France
关键词
PEM fuel cells; Water transport coefficient; Water management; Experimental study; POLYMER ELECTROLYTE MEMBRANE; GAS-DIFFUSION LAYER; RESOLUTION NEUTRON-RADIOGRAPHY; STEADY-STATE OPERATION; EXTERNAL HUMIDIFICATION; BALANCE EXPERIMENTS; DRY HYDROGEN; PEMFC; PEFC; PERFORMANCE;
D O I
10.1016/j.jpowsour.2009.01.038
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Water transport within Proton Exchange Membrane Fuel Cell (PEMFC) is investigated by systematic measurements of the water transport coefficient, defined as the net water flux across the membrane divided by the water production. It is recorded for various operating conditions (current density, gas stoichiometry, air inlet relative humidity, temperature, pressure) in a fuel cell stack fed by dry hydrogen. The measurement of the water transport coefficient shows that a significant fraction of water is collected at the anode while water is produced or injected at the cathode. Moreover, in usual operating conditions, liquid water is present at the cell outlet not only in the cathode but also in the anode. Contrary to the electrical performances, ageing has no influence on the water transport coefficient, which allows the comparison between data collected at different periods of the fuel cell lifetime. From this comparison, it was found that the hydrogen flow rate, the amount of vapor injected at cathode inlet, and the temperature are the main parameters influencing the water transport coefficient. It is shown that air and hydrogen stoichiometry present significant effects on water transport but only through these parameters. (c) 2009 Elsevier B.V. All rights reserved.
引用
收藏
页码:230 / 240
页数:11
相关论文
共 50 条
  • [31] STUDY OF DROPLET TRANSPORT IN STRAIGHT FLOW CHANNELS OF PROTON EXCHANGE MEMBRANE FUEL CELL
    Wang, Cuibiao
    Sun, Feng
    Su, Dandan
    Qin, Shuaichang
    Nie, Xuliang
    Dong, Xiaoping
    Taiyangneng Xuebao/Acta Energiae Solaris Sinica, 2024, 45 (10): : 61 - 67
  • [32] In situ diagnostics for water transport in proton exchange membrane fuel cells
    Tsushima, Shohji
    Hirai, Shuichiro
    PROGRESS IN ENERGY AND COMBUSTION SCIENCE, 2011, 37 (02) : 204 - 220
  • [33] Analysis of nitrogen and water transport in proton exchange membrane fuel cell under hydrogen recirculation
    Zhang G.-M.
    Wang X.-K.
    Xie X.-F.
    Gao Xiao Hua Xue Gong Cheng Xue Bao/Journal of Chemical Engineering of Chinese Universities, 2020, 34 (06): : 1386 - 1392
  • [34] WATER VAPOR TRANSPORT WITH CONDENSATION IN A GAS DIFFUSION LAYER OF A PROTON EXCHANGE MEMBRANE FUEL CELL
    Tan, Zetao
    Jia, Li
    Zhang, Zhuqian
    HEAT TRANSFER RESEARCH, 2012, 43 (02) : 139 - 150
  • [35] Experimental study on voltage instability of proton exchange membrane fuel cell: Types and boundaries
    Wang, Zhina
    Fu, Xi
    Shao, Yangbin
    Zhang, Xiyuan
    Hu, Zunyan
    Xu, Liangfei
    Li, Jianqiu
    Ouyang, Minggao
    INTERNATIONAL JOURNAL OF GREEN ENERGY, 2024, 21 (10) : 2368 - 2377
  • [36] Experimental and numerical study of proton exchange membrane fuel cell with spiral flow channels
    Jang, Jiin-Yuh
    Cheng, Chin-Hsiang
    Liao, Wang-Ting
    Huang, Yu-Xian
    Tsai, Ying-Chi
    APPLIED ENERGY, 2012, 99 : 67 - 79
  • [37] Performance analysis and experimental study of titanium GDL in proton exchange membrane fuel cell
    Ma, Tiancai
    Guo, Huijin
    Gu, Ziheng
    Lin, Weikang
    Qi, Jinxuan
    Yu, Chaofan
    Li, Jianghua
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2024, 83 : 604 - 613
  • [38] Experimental study of a novel piezoelectric proton exchange membrane fuel cell with nozzle and diffuser
    Ma, Hsiao-Kang
    Huang, Shih-Han
    Wang, Jyun-Sheng
    Hou, Churng-Guang
    Yu, Chen-Chiang
    Chen, Bo-Ren
    JOURNAL OF POWER SOURCES, 2010, 195 (05) : 1393 - 1400
  • [39] Numerical predictions of transport phenomena in a proton exchange membrane fuel cell
    Lin, Yongming
    Beale, Steven B.
    JOURNAL OF FUEL CELL SCIENCE AND TECHNOLOGY, 2005, 2 (04): : 213 - 218
  • [40] Experimental research on water management in proton exchange membrane fuel cells
    Yu, Li-jun
    Chen, Wen-can
    Qin, Ming-jun
    Ren, Geng-po
    JOURNAL OF POWER SOURCES, 2009, 189 (02) : 882 - 887