Experimental study on water transport coefficient in Proton Exchange Membrane Fuel Cell

被引:48
|
作者
Colinart, T. [1 ]
Chenu, A. [1 ]
Didierjean, S. [1 ]
Lottin, O. [1 ]
Besse, S. [2 ]
机构
[1] Univ Nancy, CNRS, UMR 7563, LEMTA, F-54504 Vandoeuvre Les Nancy, France
[2] HELION Hydrogen Power, F-13545 Aix En Provence, France
关键词
PEM fuel cells; Water transport coefficient; Water management; Experimental study; POLYMER ELECTROLYTE MEMBRANE; GAS-DIFFUSION LAYER; RESOLUTION NEUTRON-RADIOGRAPHY; STEADY-STATE OPERATION; EXTERNAL HUMIDIFICATION; BALANCE EXPERIMENTS; DRY HYDROGEN; PEMFC; PEFC; PERFORMANCE;
D O I
10.1016/j.jpowsour.2009.01.038
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Water transport within Proton Exchange Membrane Fuel Cell (PEMFC) is investigated by systematic measurements of the water transport coefficient, defined as the net water flux across the membrane divided by the water production. It is recorded for various operating conditions (current density, gas stoichiometry, air inlet relative humidity, temperature, pressure) in a fuel cell stack fed by dry hydrogen. The measurement of the water transport coefficient shows that a significant fraction of water is collected at the anode while water is produced or injected at the cathode. Moreover, in usual operating conditions, liquid water is present at the cell outlet not only in the cathode but also in the anode. Contrary to the electrical performances, ageing has no influence on the water transport coefficient, which allows the comparison between data collected at different periods of the fuel cell lifetime. From this comparison, it was found that the hydrogen flow rate, the amount of vapor injected at cathode inlet, and the temperature are the main parameters influencing the water transport coefficient. It is shown that air and hydrogen stoichiometry present significant effects on water transport but only through these parameters. (c) 2009 Elsevier B.V. All rights reserved.
引用
收藏
页码:230 / 240
页数:11
相关论文
共 50 条
  • [21] Experimental Study on Estimation Method of Flooding Phenomenon at the Cathode Channel in the Proton Exchange Membrane Fuel Cell
    Han, Seong-Ho
    Kuen-Ahn, Deuk
    Choi, Young-Don
    JOURNAL OF FUEL CELL SCIENCE AND TECHNOLOGY, 2014, 11 (02):
  • [22] Numerical and experimental study of water-gas transport laws in the cathode channel of proton-exchange membrane fuel cell
    Xiao, Fei
    Chen, Tao
    Lan, Yang
    Chen, Ziyu
    INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2025, 239
  • [23] An experimental study on vapor transport of a hollow fiber membrane module for humidification in proton exchange membrane fuel cells
    Xuan Linh Nguyen
    Hoang Nghia Vu
    Kim, Younghyeon
    Yu, Sangseok
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2022, 47 (42) : 18518 - 18529
  • [24] The buffer microporous layer improved water management for proton exchange membrane fuel cell at varying humidification
    Yin, Qinan
    Gao, Weitao
    Zhang, Chuang
    Gong, Fan
    Tu, Ziqiang
    Li, Yang
    Jiang, Guozhang
    Wang, Cheng
    Mao, Zongqiang
    JOURNAL OF ELECTROANALYTICAL CHEMISTRY, 2023, 928
  • [25] Anode water removal and cathode gas diffusion layer flooding in a proton exchange membrane fuel cell
    Anderson, Ryan
    Blanco, Mauricio
    Bi, Xiaotao
    Wilkinson, David P.
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2012, 37 (21) : 16093 - 16103
  • [26] Study of water transport mechanism based on the single straight channel of proton exchange membrane fuel cell
    Yuan, Wei
    Li, Jie
    Xia, Zhongxian
    Chen, Shizhong
    Zhang, Xuyang
    Wang, Zhan
    Sun, Hong
    AIP ADVANCES, 2020, 10 (10)
  • [27] The interactive effect of heat and mass transport on water condensation in the gas diffusion layer of a proton exchange membrane fuel cell
    Chuang, Po-Ya Abel
    Rahman, Md Azimur
    Mojica, Felipe
    Hussey, Daniel S.
    Jacobson, David L.
    LaManna, Jacob M.
    JOURNAL OF POWER SOURCES, 2020, 480
  • [28] Passive water management at the cathode of a planar air-breathing proton exchange membrane fuel cell
    Fabian, T.
    O'Hayre, R.
    Litster, S.
    Prinz, F. B.
    Santiago, J. G.
    JOURNAL OF POWER SOURCES, 2010, 195 (10) : 3201 - 3206
  • [29] Gas diffusion layer deformation and its effect on the transport characteristics and performance of proton exchange membrane fuel cell
    Zhou, Yibo
    Jiao, Kui
    Du, Qing
    Yin, Yan
    Li, Xianguo
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2013, 38 (29) : 12891 - 12903
  • [30] Water transport in the gas diffusion layer of proton exchange membrane fuel cell under vibration conditions
    Jiao, Daokuan
    Jiao, Kui
    Niu, Zhiqiang
    Zhong, Shenghui
    Du, Qing
    INTERNATIONAL JOURNAL OF ENERGY RESEARCH, 2020, 44 (06) : 4438 - 4448