Experimental study on water transport coefficient in Proton Exchange Membrane Fuel Cell

被引:48
|
作者
Colinart, T. [1 ]
Chenu, A. [1 ]
Didierjean, S. [1 ]
Lottin, O. [1 ]
Besse, S. [2 ]
机构
[1] Univ Nancy, CNRS, UMR 7563, LEMTA, F-54504 Vandoeuvre Les Nancy, France
[2] HELION Hydrogen Power, F-13545 Aix En Provence, France
关键词
PEM fuel cells; Water transport coefficient; Water management; Experimental study; POLYMER ELECTROLYTE MEMBRANE; GAS-DIFFUSION LAYER; RESOLUTION NEUTRON-RADIOGRAPHY; STEADY-STATE OPERATION; EXTERNAL HUMIDIFICATION; BALANCE EXPERIMENTS; DRY HYDROGEN; PEMFC; PEFC; PERFORMANCE;
D O I
10.1016/j.jpowsour.2009.01.038
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Water transport within Proton Exchange Membrane Fuel Cell (PEMFC) is investigated by systematic measurements of the water transport coefficient, defined as the net water flux across the membrane divided by the water production. It is recorded for various operating conditions (current density, gas stoichiometry, air inlet relative humidity, temperature, pressure) in a fuel cell stack fed by dry hydrogen. The measurement of the water transport coefficient shows that a significant fraction of water is collected at the anode while water is produced or injected at the cathode. Moreover, in usual operating conditions, liquid water is present at the cell outlet not only in the cathode but also in the anode. Contrary to the electrical performances, ageing has no influence on the water transport coefficient, which allows the comparison between data collected at different periods of the fuel cell lifetime. From this comparison, it was found that the hydrogen flow rate, the amount of vapor injected at cathode inlet, and the temperature are the main parameters influencing the water transport coefficient. It is shown that air and hydrogen stoichiometry present significant effects on water transport but only through these parameters. (c) 2009 Elsevier B.V. All rights reserved.
引用
收藏
页码:230 / 240
页数:11
相关论文
共 50 条
  • [1] Degradation aspects of water formation and transport in Proton Exchange Membrane Fuel Cell: A review
    Ous, T.
    Arcoumanis, C.
    JOURNAL OF POWER SOURCES, 2013, 240 : 558 - 582
  • [2] Thermal Effect on Water Transport in Proton Exchange Membrane Fuel Cell
    Thomas, A.
    Maranzana, G.
    Didierjean, S.
    Dillet, J.
    Lottin, O.
    FUEL CELLS, 2012, 12 (02) : 212 - 224
  • [3] An Experimental Study on Micro Proton Exchange Membrane Fuel Cell
    Chen, Chiun-Hsun
    Chen, Tang-Yuan
    Cheng, Chih-Wei
    Peng, Rong-Guie
    JOURNAL OF FUEL CELL SCIENCE AND TECHNOLOGY, 2012, 9 (03):
  • [4] Liquid water transport phenomena in the porous transport layer of proton exchange membrane fuel cell based on lattice Boltzmann simulation
    Jiang, Ziheng
    Yang, Guogang
    Shen, Qiuwan
    Li, Shian
    Liao, Jiadong
    Yang, Xiaoxing
    Sun, Juncai
    MATERIALS TODAY COMMUNICATIONS, 2023, 37
  • [5] Performance analysis and experimental study of titanium GDL in proton exchange membrane fuel cell
    Ma, Tiancai
    Guo, Huijin
    Gu, Ziheng
    Lin, Weikang
    Qi, Jinxuan
    Yu, Chaofan
    Li, Jianghua
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2024, 83 : 604 - 613
  • [6] Water transport study in a high temperature proton exchange membrane fuel cell stack
    Bezmalinovic, Dario
    Strahl, Stephan
    Roda, Vicente
    Husar, Attila
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2014, 39 (20) : 10627 - 10640
  • [7] Laser-perforated gas diffusion layer for promoting liquid water transport in a proton exchange membrane fuel cell
    Wang, Xueke
    Chen, Sitong
    Fan, Zhaohu
    Li, Weiwei
    Wang, Shubo
    Li, Xue
    Zhao, Yang
    Zhu, Tong
    Xie, Xiaofeng
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2017, 42 (50) : 29995 - 30003
  • [8] A novel experimental based statistical study for water management in proton exchange membrane fuel cells
    Hasheminasab, M.
    Kermani, M. J.
    Nourazar, S. S.
    Khodsiani, M. H.
    APPLIED ENERGY, 2020, 264 (264)
  • [9] Evaluation of the net water transport through electrolytes in Proton Exchange Membrane Fuel Cell
    Lee, Dongryul
    Bae, Joongmyeon
    JOURNAL OF POWER SOURCES, 2009, 191 (02) : 390 - 399
  • [10] Experimental study of key operating parameters effects on the characteristics of proton exchange membrane fuel cell with anode recirculation
    Meng, Xiangchao
    Ren, Hong
    Yang, Xiaokang
    Tao, Tienan
    Shao, Zhigang
    ENERGY CONVERSION AND MANAGEMENT, 2022, 256