Experimental study on water transport coefficient in Proton Exchange Membrane Fuel Cell

被引:48
|
作者
Colinart, T. [1 ]
Chenu, A. [1 ]
Didierjean, S. [1 ]
Lottin, O. [1 ]
Besse, S. [2 ]
机构
[1] Univ Nancy, CNRS, UMR 7563, LEMTA, F-54504 Vandoeuvre Les Nancy, France
[2] HELION Hydrogen Power, F-13545 Aix En Provence, France
关键词
PEM fuel cells; Water transport coefficient; Water management; Experimental study; POLYMER ELECTROLYTE MEMBRANE; GAS-DIFFUSION LAYER; RESOLUTION NEUTRON-RADIOGRAPHY; STEADY-STATE OPERATION; EXTERNAL HUMIDIFICATION; BALANCE EXPERIMENTS; DRY HYDROGEN; PEMFC; PEFC; PERFORMANCE;
D O I
10.1016/j.jpowsour.2009.01.038
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Water transport within Proton Exchange Membrane Fuel Cell (PEMFC) is investigated by systematic measurements of the water transport coefficient, defined as the net water flux across the membrane divided by the water production. It is recorded for various operating conditions (current density, gas stoichiometry, air inlet relative humidity, temperature, pressure) in a fuel cell stack fed by dry hydrogen. The measurement of the water transport coefficient shows that a significant fraction of water is collected at the anode while water is produced or injected at the cathode. Moreover, in usual operating conditions, liquid water is present at the cell outlet not only in the cathode but also in the anode. Contrary to the electrical performances, ageing has no influence on the water transport coefficient, which allows the comparison between data collected at different periods of the fuel cell lifetime. From this comparison, it was found that the hydrogen flow rate, the amount of vapor injected at cathode inlet, and the temperature are the main parameters influencing the water transport coefficient. It is shown that air and hydrogen stoichiometry present significant effects on water transport but only through these parameters. (c) 2009 Elsevier B.V. All rights reserved.
引用
收藏
页码:230 / 240
页数:11
相关论文
共 50 条
  • [1] Water transport in the proton-exchange-membrane fuel cell: Measurements of the effective drag coefficient
    Janssen, GJM
    Overvelde, MLJ
    JOURNAL OF POWER SOURCES, 2001, 101 (01) : 117 - 125
  • [2] Water transport study in a high temperature proton exchange membrane fuel cell stack
    Bezmalinovic, Dario
    Strahl, Stephan
    Roda, Vicente
    Husar, Attila
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2014, 39 (20) : 10627 - 10640
  • [3] Thermal Effect on Water Transport in Proton Exchange Membrane Fuel Cell
    Thomas, A.
    Maranzana, G.
    Didierjean, S.
    Dillet, J.
    Lottin, O.
    FUEL CELLS, 2012, 12 (02) : 212 - 224
  • [4] A phenomenological model of water transport in a proton exchange membrane fuel cell
    Janssen, GJM
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2001, 148 (12) : A1313 - A1323
  • [5] An Experimental Study on Micro Proton Exchange Membrane Fuel Cell
    Chen, Chiun-Hsun
    Chen, Tang-Yuan
    Cheng, Chih-Wei
    Peng, Rong-Guie
    JOURNAL OF FUEL CELL SCIENCE AND TECHNOLOGY, 2012, 9 (03):
  • [6] An experimental study on the performance of proton exchange membrane fuel cell
    Kellegoz, M.
    Ozkan, I.
    JOURNAL OF OPTOELECTRONICS AND ADVANCED MATERIALS, 2016, 18 (3-4): : 399 - 406
  • [7] Computational study of water transport in proton exchange membrane fuel cells
    Um, Sukkee
    Wang, Chao-Yang
    JOURNAL OF POWER SOURCES, 2006, 156 (02) : 211 - 223
  • [8] Model of water transport for proton-exchange membrane fuel cell (PEMFC)
    Dalian Inst of Chemical Physics, Chinese Acad of Sciences, Dalian, China
    Huagong Xuebao, 1 (39-48):
  • [9] The combined effects of water transport on proton exchange membrane fuel cell performance
    Li Y.
    Lv H.
    Chemical Engineering Transactions, 2018, 65 : 691 - 696
  • [10] Analyses of heat and water transport interactions in a proton exchange membrane fuel cell
    Afshari, E.
    Jazayeri, S. A.
    JOURNAL OF POWER SOURCES, 2009, 194 (01) : 423 - 432