Improved Poly(3,4-Ethylenedioxythiophene) (PEDOT) for Neural Stimulation

被引:35
作者
Mandal, Himadri Shekhar [1 ]
Kastee, Jemika Shrestha [1 ]
McHail, Daniel Glenn [2 ]
Rubinson, Judith Faye [3 ]
Pancrazio, Joseph Jewell [1 ]
Dumas, Theodore Constantine [2 ]
机构
[1] George Mason Univ, Dept Bioengn, 4400 Univ Dr,MS 1G5, Fairfax, VA 22030 USA
[2] George Mason Univ, Krasnow Inst Adv Study, Dept Mol Neurosci, Fairfax, VA 22030 USA
[3] Georgetown Univ, Dept Chem, Washington, DC 20057 USA
来源
NEUROMODULATION | 2015年 / 18卷 / 08期
关键词
Conductive polymer; neural stimulation; PEDOT; SILICON MICROELECTRODE ARRAYS; TISSUE-RESPONSE; MORPHOLOGY; IRIDIUM; FILMS; ENCAPSULATION; ELECTRODES; INTERFACES; STABILITY; CORTEX;
D O I
10.1111/ner.12285
中图分类号
R-3 [医学研究方法]; R3 [基础医学];
学科分类号
1001 ;
摘要
Objective: This study compares the stability of three variations of the conductive polymer poly(3,4-ethylenedioxythiophene) or PEDOT for neural micro-stimulation under both in vitro and in vivo conditions. We examined PEDOT films deposited with counterions tetrafluoroborate (TFB) and poly(styrenesulfonate) (PSS), and PEDOT:PSS combined with carbon nanotubes (CNTs). Methods: For the in vitro stability evaluation, implantable micro-wires were coated with the polymers, placed in a vial containing phosphate buffered saline (PBS) under accelerated aging conditions (60 degrees C), and current pulses were applied. The resulting voltage profile was monitored over time. Following the same polymer deposition protocol, chronic neural micro-probes were modified and implanted in the motor cortex of two rats for the in vivo stability comparison. Similar stimulating current pulses were applied and the output voltage was examined. The electrochemical impedance spectroscopic (EIS) data were also recorded and fit to an equivalent circuit model that incorporates and quantifies the time-dependent polymer degradation and impedance associated with tissue surrounding each micro-electrode site. Results: Both in vitro and in vivo voltage output profiles show relatively stable behavior for the PEDOT:TFB modified micro-electrodes compared to the PEDOT:PSS and CNT:PEDOT:PSS modified ones. EIS modeling demonstrates that the time-dependent increase in the polymeric resistance is roughly similar to the rise in the respective voltage output in vivo and indicates that the polymeric stability and conductivity, rather than the impedance due to the tissue response, is the primary factor determining the output voltage profile. It was also noted that the number of electrodes showing unit activity post-surgery did not decay for PEDOT:TFB as was the case for PEDOT:PSS and CNT:PEDOT:PSS. Conclusions: PEDOT:TFB may be an enabling material for achieving long lasting micro-stimulation and recording.
引用
收藏
页码:657 / 663
页数:7
相关论文
共 33 条
[1]  
ASTM International, 2011, F198007 ASTM
[2]   Interaction of macrophages with fibrous materials in vitro [J].
Bernatchez, SF ;
Parks, PJ ;
Gibbons, DF .
BIOMATERIALS, 1996, 17 (21) :2077-2086
[3]   Neuronal cell loss accompanies the brain tissue response to chronically implanted silicon microelectrode arrays [J].
Biran, R ;
Martin, DC ;
Tresco, PA .
EXPERIMENTAL NEUROLOGY, 2005, 195 (01) :115-126
[4]   Effects of insertion conditions on tissue strain and vascular damage during neuroprosthetic device insertion [J].
Bjornsson, C. S. ;
Oh, S. J. ;
Al-Kofahi, Y. A. ;
Lim, Y. J. ;
Smith, K. L. ;
Turner, J. N. ;
De, S. ;
Roysam, B. ;
Shain, W. ;
Kim, S. J. .
JOURNAL OF NEURAL ENGINEERING, 2006, 3 (03) :196-207
[5]   AN INVESTIGATION OF HYDROUS OXIDE-GROWTH ON IRIDIUM IN BASE [J].
BURKE, LD ;
SCANNELL, RA .
JOURNAL OF ELECTROANALYTICAL CHEMISTRY, 1984, 175 (1-2) :119-141
[6]   PREPARATION OF AN OXIDIZED IRIDIUM ELECTRODE AND THE VARIATION OF ITS POTENTIAL WITH PH [J].
BURKE, LD ;
MULCAHY, JK ;
WHELAN, DP .
JOURNAL OF ELECTROANALYTICAL CHEMISTRY, 1984, 163 (1-2) :117-128
[7]   Large-scale recording of neuronal ensembles [J].
Buzsáki, G .
NATURE NEUROSCIENCE, 2004, 7 (05) :446-451
[8]   Over-pulsing degrades activated iridium oxide films used for intracortical neural stimulation [J].
Cogan, SF ;
Guzelian, AA ;
Agnew, WF ;
Yuen, TGH ;
McCreery, DB .
JOURNAL OF NEUROSCIENCE METHODS, 2004, 137 (02) :141-150
[9]   Neural stimulation and recording electrodes [J].
Cogan, Stuart F. .
ANNUAL REVIEW OF BIOMEDICAL ENGINEERING, 2008, 10 :275-309
[10]   Conductivity, morphology, interfacial chemistry, and stability of poly(3,4-ethylene dioxythiophene)-poly(styrene sulfonate): A photoelectron spectroscopy study [J].
Crispin, X ;
Marciniak, S ;
Osikowicz, W ;
Zotti, G ;
Van der Gon, AWD ;
Louwet, F ;
Fahlman, M ;
Groenendaal, L ;
De Schryver, F ;
Salaneck, WR .
JOURNAL OF POLYMER SCIENCE PART B-POLYMER PHYSICS, 2003, 41 (21) :2561-2583