Non-enzymatic electrochemical sensor to detect γ-aminobutyric acid with ligand-based on graphene oxide modi fied gold electrode

被引:16
|
作者
Alamry, Khalid A. [1 ]
Hussein, Mahmoud A. [1 ]
Choi, Jeong-woo [2 ]
El-Said, Waleed A. [3 ,4 ]
机构
[1] King Abdulaziz Univ, Dept Chem, Fac Sci, POB 80203, Jeddah 21589, Saudi Arabia
[2] Sogang Univ, Dept Chem & Biomol Engn, 35 Baekbeom Ro, Seoul 04107, South Korea
[3] Univ Jeddah, Dept Chem, Coll Sci, POB 80327, Jeddah 21589, Saudi Arabia
[4] Assiut Univ, Dept Chem, Fac Sci, Assiut 71516, Egypt
关键词
Gamma-aminobutyric acid; Electrochemical sensor; Enzymeless; Glutamate; Cyclic voltammetry; Square wave voltammetry; PERFORMANCE LIQUID-CHROMATOGRAPHY; INDUCED FLUORESCENCE DETECTION; REAL-TIME DETECTION; MICRODIALYSIS SAMPLES; CAPILLARY-ELECTROPHORESIS; SIMULTANEOUS GLUTAMATE; DOPAMINE; BRAIN; GABA; CELL;
D O I
10.1016/j.jelechem.2020.114789
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
In this study, the simple and sensitive enzymeless electrochemical gamma-aminobutyric acid (GABA) neurotransmitter sensor was developed based on the graphene oxide modified Au electrode with the ligand. A mixture of orthophthalaldehyde (OPA) and an alkylthiol reagent is used as a ligand to interact with GABA, which became an electro-chemical active compound. The sensor consisted of a graphene oxide modified Au electrode. The effect of pH variation on the electrochemical signal of GABA was investigated; a good electrochemical response was observed in neutraland slightly alkalinemedium, i.e. the value of the pH for the physiological-like media. The proposed sensor detected the wide range concentration of GABA from 250 nmol L-1 to 100 mu mol L-1 with a detection limit of 98 nmol L-1. And the sensor could detect a mixture of GABA and Glutamate, and GABA in complex solutions including human serum and urine, which indicated the capability of the sensor to detect GABA in complicated matrixes. The proposed sensor system can be applied to detect neurotransmitters in the brain and be used in the field of diagnosis and treatment of neurological disorders.
引用
收藏
页数:9
相关论文
共 50 条
  • [31] Non-enzymatic Electrochemical Sensing of 3-Hydroxybutyric Acid by Incorporating Manganese Oxide Modified Electrode and Nitroprusside Electrolyte
    Ngamaroonchote, Aroonsri
    Karn-orachai, Kullavadee
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2022, 169 (09)
  • [32] CoP Nanocage-Based Efficient Non-enzymatic Glucose Electrochemical Sensor
    Lu Xue-Yi
    Liu Jun-Guo
    Zhu Yan-Yan
    CHINESE JOURNAL OF INORGANIC CHEMISTRY, 2020, 36 (09) : 1675 - 1682
  • [33] Graphene oxide-Cu(II) composite electrode for non-enzymatic determination of hydrogen peroxide
    Muralikrishna, S.
    Cheunkar, Sarawut
    Lertanantawong, Benchaporn
    Ramakrishnappa, T.
    Nagaraju, D. H.
    Surareungchai, Werasak
    Balakrishna, R. Geetha
    Reddy, K. Ramakrishna
    JOURNAL OF ELECTROANALYTICAL CHEMISTRY, 2016, 776 : 59 - 65
  • [34] PANI: Ni(Leu)2 based non-enzymatic electrochemical dopamine sensor
    Yildiz, Dilber Esra
    Baytemir, Gulsen
    Tasaltin, Nevin
    Karakus, Selcan
    Gursu, Gamze
    Kose, Dursun Ali
    PHYSICA SCRIPTA, 2023, 98 (12)
  • [35] A nanocomposite-based electrochemical sensor for non-enzymatic detection of hydrogen peroxide
    Du, Xin
    Chen, Yuan
    Dong, Wenhao
    Han, Bingkai
    Liu, Min
    Chen, Qiang
    Zhou, Jun
    ONCOTARGET, 2017, 8 (08) : 13039 - 13047
  • [36] A highly sensitive non-enzymatic glucose electrochemical sensor based on NiO nanohives
    Thi Oanh Vu
    Thi Xuan Chu
    Duc Hoa Nguyen
    ADVANCES IN NATURAL SCIENCES-NANOSCIENCE AND NANOTECHNOLOGY, 2021, 12 (04)
  • [37] Non-Enzymatic Electrochemical Detection for Uric Acid Based on a Glassy Carbon Electrode Modified With MOF-71
    Abrori, Syauqi Abdurrahman
    Septiani, Ni Luh Wulan
    Hakim, Fahmi Nur
    Maulana, Angga
    Suyatman
    Nugraha
    Anshori, Isa
    Yuliarto, Brian
    IEEE SENSORS JOURNAL, 2021, 21 (01) : 170 - 177
  • [38] Highly sensitive non-enzymatic glucose sensor based on copper oxide nanorods
    Haneen Ali Jasim
    Osama Abdul Azeez Dakhil
    Journal of Nanoparticle Research, 2022, 24
  • [39] Highly sensitive non-enzymatic glucose sensor based on copper oxide nanorods
    Jasim, Haneen Ali
    Dakhil, Osama Abdul Azeez
    JOURNAL OF NANOPARTICLE RESEARCH, 2022, 24 (11)
  • [40] Fabrication of non-enzymatic and highly sensitive electrochemical ascorbic acid sensor based on GO/Ag/PMMA nanocomposites
    Khattak, Noor Saeed
    Ara, Latafat
    Shah, Luqman Ali
    Ullah, Rizwan
    Rehman, Tanzil Ur
    INORGANIC CHEMISTRY COMMUNICATIONS, 2024, 170