Non-enzymatic electrochemical sensor to detect γ-aminobutyric acid with ligand-based on graphene oxide modi fied gold electrode

被引:16
|
作者
Alamry, Khalid A. [1 ]
Hussein, Mahmoud A. [1 ]
Choi, Jeong-woo [2 ]
El-Said, Waleed A. [3 ,4 ]
机构
[1] King Abdulaziz Univ, Dept Chem, Fac Sci, POB 80203, Jeddah 21589, Saudi Arabia
[2] Sogang Univ, Dept Chem & Biomol Engn, 35 Baekbeom Ro, Seoul 04107, South Korea
[3] Univ Jeddah, Dept Chem, Coll Sci, POB 80327, Jeddah 21589, Saudi Arabia
[4] Assiut Univ, Dept Chem, Fac Sci, Assiut 71516, Egypt
关键词
Gamma-aminobutyric acid; Electrochemical sensor; Enzymeless; Glutamate; Cyclic voltammetry; Square wave voltammetry; PERFORMANCE LIQUID-CHROMATOGRAPHY; INDUCED FLUORESCENCE DETECTION; REAL-TIME DETECTION; MICRODIALYSIS SAMPLES; CAPILLARY-ELECTROPHORESIS; SIMULTANEOUS GLUTAMATE; DOPAMINE; BRAIN; GABA; CELL;
D O I
10.1016/j.jelechem.2020.114789
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
In this study, the simple and sensitive enzymeless electrochemical gamma-aminobutyric acid (GABA) neurotransmitter sensor was developed based on the graphene oxide modified Au electrode with the ligand. A mixture of orthophthalaldehyde (OPA) and an alkylthiol reagent is used as a ligand to interact with GABA, which became an electro-chemical active compound. The sensor consisted of a graphene oxide modified Au electrode. The effect of pH variation on the electrochemical signal of GABA was investigated; a good electrochemical response was observed in neutraland slightly alkalinemedium, i.e. the value of the pH for the physiological-like media. The proposed sensor detected the wide range concentration of GABA from 250 nmol L-1 to 100 mu mol L-1 with a detection limit of 98 nmol L-1. And the sensor could detect a mixture of GABA and Glutamate, and GABA in complex solutions including human serum and urine, which indicated the capability of the sensor to detect GABA in complicated matrixes. The proposed sensor system can be applied to detect neurotransmitters in the brain and be used in the field of diagnosis and treatment of neurological disorders.
引用
收藏
页数:9
相关论文
共 50 条
  • [1] A non-enzymatic electrochemical sensor for detection of sialic acid based on a porphine/graphene oxide modified electrode via indicator displacement assay
    Liu, Tailin
    Fu, Bo
    Chen, Jincheng
    Yan, Zhihong
    Li, Kang
    ELECTROCHIMICA ACTA, 2018, 269 : 136 - 143
  • [2] Highly Sensitive Non-Enzymatic Electrochemical Sensor to Detect an Important Neurotransmitter Using Cobalt-Based Metal-Organic Framework/Graphene Oxide Composite
    Houshmand, Shiva
    Mazloum-Ardakani, Mohammad
    Mohammadian-Sarcheshmeh, Hamideh
    Mohseni-Sardari, Fereshteh
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2025, 172 (01)
  • [3] A nanohybrid based on porphyrin dye functionalized graphene oxide for the application in non-enzymatic electrochemical sensor
    Wu, Hai
    Li, Xiang
    Chen, Miaomiao
    Wang, Chang
    Wei, Ting
    Zhang, Hong
    Fan, Suhua
    ELECTROCHIMICA ACTA, 2018, 259 : 355 - 364
  • [4] Graphene oxide/silver nanocomposite based non-enzymatic glucose sensor
    Singhal A.
    Anand V.K.
    Virdi G.S.
    Singhal, Anuj, 2018, American Scientific Publishers (12): : 397 - 400
  • [5] Porous graphene oxide based disposable non-enzymatic electrochemical sensor for the determination of nicotinamide adenine dinucleotide
    Elancheziyan, Mari
    Theyagarajan, K.
    Ponnusamy, Vinoth Kumar
    Thenmozhi, Kathavarayan
    Senthilkumar, Sellappan
    MICRO AND NANO ENGINEERING, 2022, 15
  • [6] Non-enzymatic electrochemical sensor for nitrite based on a graphene oxide-polyaniline-Au nanoparticles nanocomposite
    Chen, Guozhen
    Zheng, Jianbin
    MICROCHEMICAL JOURNAL, 2021, 164
  • [7] A non-enzymatic electrochemical hydrogen peroxide sensor based on copper oxide nanostructures
    Mihailova, Irena
    Gerbreders, Vjaceslavs
    Krasovska, Marina
    Sledevskis, Eriks
    Mizers, Valdis
    Bulanovs, Andrejs
    Ogurcovs, Andrejs
    BEILSTEIN JOURNAL OF NANOTECHNOLOGY, 2022, 13 : 424 - 436
  • [8] A non-enzymatic electrochemical sensor based on zinc oxide/reduced graphene oxide (ZnO/rGO) nanocomposite for effective detection of urea
    Aparna, S. M.
    Rakhi, R. B.
    MATERIALS SCIENCE AND ENGINEERING B-ADVANCED FUNCTIONAL SOLID-STATE MATERIALS, 2025, 312
  • [9] A Comparative evaluation of Graphene oxide based materials for Electrochemical non-enzymatic sensing of Curcumin
    Dey, Nibedita
    Devasena, T.
    Sivalingam, Tamilarasu
    MATERIALS RESEARCH EXPRESS, 2018, 5 (02):
  • [10] Highly Sensitive Electrochemical Non-Enzymatic Uric Acid Sensor Based on Cobalt Oxide Puffy Balls-like Nanostructure
    Nagal, Vandana
    Masrat, Sakeena
    Khan, Marya
    Alam, Shamshad
    Ahmad, Akil
    Alshammari, Mohammed B.
    Bhat, Kiesar Sideeq
    Novikov, Sergey M.
    Mishra, Prabhash
    Khosla, Ajit
    Ahmad, Rafiq
    BIOSENSORS-BASEL, 2023, 13 (03):