Load torque identification in induction motor using neural networks technique

被引:20
|
作者
Goedtel, Alessandro [1 ]
da Silva, Ivan Nunes [1 ]
Serni, Paulo Jose Amaral [1 ]
机构
[1] Univ Sao Paulo, Dept Elect Engn, BR-13566590 Sao Carlos, SP, Brazil
基金
巴西圣保罗研究基金会;
关键词
induction motors; load modeling; neural networks; parameter estimation; system identification;
D O I
10.1016/j.epsr.2006.01.006
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Induction motors are widely used in several industrial sectors. However, the dimensioning of induction motors is often inaccurate because, in most cases, the load behavior in the shaft is completely unknown. The proposal of this paper is to use artificial neural networks as a tool for dimensioning induction motors rather than conventional methods, which use classical identification techniques and mechanical load modeling. Simulation results are also presented to validate the proposed approach. (C) 2006 Elsevier B.V. All rights reserved.
引用
收藏
页码:35 / 45
页数:11
相关论文
共 50 条
  • [31] Parametric system identification using neural networks
    Tutunji, Tarek A.
    APPLIED SOFT COMPUTING, 2016, 47 : 251 - 261
  • [32] Torque ripple reduction in switched reluctance motor drives using B-spline neural networks
    Lin, Zhengyu
    Reay, Donald S.
    Williams, Barry W.
    He, Xiangning
    IEEE TRANSACTIONS ON INDUSTRY APPLICATIONS, 2006, 42 (06) : 1445 - 1453
  • [33] Magnetization Curve Identification of Vector-Controlled Induction Motor at Low-Load Conditions
    Terzic, Bozo
    Despalatovic, Marin
    Slutej, Alojz
    AUTOMATIKA, 2012, 53 (03) : 255 - 262
  • [34] Identification of Die Thermal Dynamics Using Neural Networks
    Seo, Jaho
    Khajepour, Amir
    Huissoon, Jan P.
    JOURNAL OF DYNAMIC SYSTEMS MEASUREMENT AND CONTROL-TRANSACTIONS OF THE ASME, 2011, 133 (06):
  • [35] A new system identification technique using Kalman filtering and multilayer neural networks
    Lou, KN
    Perez, RA
    ARTIFICIAL INTELLIGENCE IN ENGINEERING, 1996, 10 (01): : 1 - 8
  • [36] Identification of immeasurable responses of systems using neural networks
    Zhu, CC
    Li, J
    Wang, DS
    Ning, ZG
    ISTM/2001: 4TH INTERNATIONAL SYMPOSIUM ON TEST AND MEASUREMENT, VOLS 1 AND 2, CONFERENCE PROCEEDINGS, 2001, : 394 - 398
  • [37] Three-Phase Induction Motor Electrical Parameter Estimation Using Artificial Neural Networks
    Lourenco, Gabriel
    de Arruda, Gabriel Tavore
    Correia de La Rosa, Victor Emanuel
    Castoldi, Marcelo Favoretto
    Goedtel, Alessandro
    de Souza, Wesley Angelino
    2024 27TH INTERNATIONAL SYMPOSIUM ON POWER ELECTRONICS, ELECTRICAL DRIVES, AUTOMATION AND MOTION, SPEEDAM 2024, 2024, : 883 - 888
  • [38] Parameter Identification of Induction Motor Drives
    Khitrov, Alexander
    Khitrov, Andrei
    Kurnikov, Kirill
    2021 28TH INTERNATIONAL WORKSHOP ON ELECTRIC DRIVES: IMPROVING RELIABILITY OF ELECTRIC DRIVES (IWED2021), 2021,
  • [39] Substructural identification using neural networks
    Yun, CB
    Bahng, EY
    COMPUTERS & STRUCTURES, 2000, 77 (01) : 41 - 52
  • [40] Neural network flux optimization using a model of losses in induction motor drives
    Pryymak, Bogdan
    Moreno-Eguilaz, Juan M.
    Peracaula, Juan
    MATHEMATICS AND COMPUTERS IN SIMULATION, 2006, 71 (4-6) : 290 - 298