A finite-difference scheme to model Switched Complementary Linear Systems

被引:0
|
作者
Gutierrez-Pachas, Daniel A. [1 ]
Mazorche, Sandro R. [2 ]
机构
[1] Univ Catolica San Pablo Arequipa, Dept Comp Sci, Arequipa, Peru
[2] Univ Fed Juiz Fora, Dept Matemat, Juiz De Fora, MG, Brazil
来源
2022 XVLIII LATIN AMERICAN COMPUTER CONFERENCE (CLEI 2022) | 2022年
关键词
Switched complementarity linear systems; Finite difference method; Mixed complementarity problems; ALGORITHM;
D O I
10.1109/CLEI56649.2022.9959941
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Developing efficient numerical techniques to model complex systems is valuable, and their main contribution is to reduce computational costs. This work presents a numerical approach that deals with this difficulty by incorporating a concise formulation to understand the dynamic of complementarity switched systems using the finite difference method. We introduce a discrete-time numerical version of the Switched Complementary Linear System and convert it into a mixed complementarity problem. In addition, we compute the numerical solution of the dynamics of a DC-DC boost converter by combining our proposal with the Feasible Directions Algorithm for Mixed Nonlinear Complementarity Problems.
引用
收藏
页数:5
相关论文
共 50 条
  • [1] Linear finite-difference bond graph model of an ionic polymer actuator
    Bentefrit, M.
    Grondel, S.
    Soyer, C.
    Fannir, A.
    Cattan, E.
    Madden, J. D.
    Nguyen, T. M. G.
    Plesse, C.
    Vidal, F.
    SMART MATERIALS AND STRUCTURES, 2017, 26 (09)
  • [2] Hybrid finite-difference scheme for solving the dispersion equation
    Tsai, TL
    Yang, JC
    Huang, LH
    JOURNAL OF HYDRAULIC ENGINEERING-ASCE, 2002, 128 (01): : 78 - 86
  • [3] Finite-difference scheme for one problem of nonlinear optics
    Laukaityte, I.
    Ciegis, R.
    MATHEMATICAL MODELLING AND ANALYSIS, 2008, 13 (02) : 211 - 222
  • [4] A FINITE-DIFFERENCE SCHEME OVERCONVERGENT AT CERTAIN MESH POINTS
    STYS, T
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 1992, 42 (02) : 233 - 243
  • [5] Finite-Difference Solutions of a Non-linear Schrodinger
    Hosseini, F.
    Pouyafar, V.
    Sadough, S. A.
    PROCEEDINGS OF THE 11TH WSEAS INTERNATIONAL CONFERENCE ON MATHEMATICAL AND COMPUTATIONAL METHODS IN SCIENCE AND ENGINEERING (MACMESE '09), 2009, : 92 - +
  • [6] AN IMPROVED FINITE-DIFFERENCE SCHEME FOR A NEWTONIAN JET SWELL PROBLEM
    YU, TA
    LIU, TJ
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, 1992, 14 (04) : 495 - 501
  • [7] An explicit finite-difference scheme for the solution of the Kadomtsev-Petviashvili equation
    Bratsos, AG
    Twizell, EH
    INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 1998, 68 (1-2) : 175 - 187
  • [8] Stability of a matrix finite-difference scheme for solving the problem of elastic vibrations
    Zhestkaya V.D.
    Computational Mathematics and Mathematical Physics, 2007, 47 (1) : 32 - 36
  • [9] Finite-Difference Hermite WENO Scheme for Degasperis-Procesi Equation
    Li, Liang
    Feng, Yapu
    Wang, Yanmeng
    Pang, Liuyong
    Zhu, Jun
    PROCESSES, 2023, 11 (05)
  • [10] FINITE-DIFFERENCE SCHEMES FOR PARABOLIC PROBLEMS ON GRAPHS
    Ciegis, R.
    Tumanova, N.
    LITHUANIAN MATHEMATICAL JOURNAL, 2010, 50 (02) : 164 - 178