The weighted generalized inverses of a partitioned

被引:8
作者
Wang, GR [1 ]
Zheng, B
机构
[1] Shanghai Normal Univ, Sch Math Sci, Shanghai 200234, Peoples R China
[2] Shanghai Normal Univ, Dept Math, Shanghai 200436, Peoples R China
[3] Lanzhou Univ, Lanzhou 730000, Peoples R China
关键词
weighted generalized inverses; Moore-Penrose inverse; partitioned matrices; unified form;
D O I
10.1016/s0096-3003(03)00772-0
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A constructive proof for the recursive representation of the weighted Moore-Penrose inverse of a partitioned matrix A = (U V) is given. Using the same thread of reasoning, similar results for A((1,3M)) and A((1,4N)) are derived. And all of these results can be represented by an unified form. (C) 2003 Elsevier Inc. All rights reserved.
引用
收藏
页码:221 / 233
页数:13
相关论文
共 14 条
[1]  
BENISRAEL A, 1974, GENERALIZED INVERSES
[2]  
BJORCK A, 1990, HDB NUMERICAL ANAL, V1
[3]  
Greville T.N.E., 1966, SIAM J APPL MATH, V9, P249
[4]   SOME APPLICATIONS OF THE PSEUDOINVERSE OF A MATRIX [J].
GREVILLE, TNE .
SIAM REVIEW, 1960, 2 (01) :15-22
[5]   ASSOCIATIVE MEMORY APPROACH TO THE IDENTIFICATION OF STRUCTURAL AND MECHANICAL SYSTEMS [J].
KALABA, RE ;
UDWADIA, FE .
JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 1993, 76 (02) :207-223
[6]  
MIAO JM, 1989, J COMPUT MATH, V7, P321
[7]  
RAO CR, 1962, J ROY STAT SOC B, V24, P152
[8]   Inverse order rule for weighted generalized inverse [J].
Sun, WY ;
Wei, YM .
SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 1998, 19 (03) :772-775
[9]   A NEW PERSPECTIVE ON CONSTRAINED MOTION [J].
UDWADIA, FE ;
KALABA, RE .
PROCEEDINGS OF THE ROYAL SOCIETY OF LONDON SERIES A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 1992, 439 (1906) :407-410
[10]   General forms for the recursive determination of generalized inverses: Unified approach [J].
Udwadia, FE ;
Kalaba, RE .
JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 1999, 101 (03) :509-521