An improved scene text extraction method using Conditional Random Field and Optical Character Recognition

被引:17
作者
Zhang, Hongwei [1 ]
Liu, Changsong [1 ]
Yang, Cheng [1 ]
Ding, Xiaoqing [1 ]
Wang, KongQiao [2 ]
机构
[1] Tsinghua Univ, Dept Elect Engn, State Key Lab Intelligent Technol & Syst, Beijing 100084, Peoples R China
[2] Nokia Res Ctr Beijing, BDA, Beijing 100176, Peoples R China
来源
11TH INTERNATIONAL CONFERENCE ON DOCUMENT ANALYSIS AND RECOGNITION (ICDAR 2011) | 2011年
基金
中国国家自然科学基金;
关键词
CRF; OCR; BP; Scene text extraction;
D O I
10.1109/ICDAR.2011.148
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Over the past few years, research on scene text extraction has developed rapidly. Recently, condition random field (CRF) has been used to give connected components (CCs) 'text' or 'non-text' labels. However, a burning issue in CRF model comes from multiple text lines extraction. In this paper, we propose a two-step iterative CRF algorithm with a Belief Propagation inference and an OCR filtering stage. Two kinds of neighborhood relationship graph are used in the respective iterations for extracting multiple text lines. Furthermore, OCR confidence is used as an indicator for identifying the text regions, while a traditional OCR filter module only considered the recognition results. The first CRF iteration aims at finding certain text CCs, especially in multiple text lines, and sending uncertain CCs to the second iteration. The second iteration gives second chance for the uncertain CCs and filter false alarm CCs with the help of OCR. Experiments based on the public dataset of ICDAR 2005 prove that the proposed method is comparative with the existing algorithms.
引用
收藏
页码:708 / 712
页数:5
相关论文
共 13 条
  • [1] Preprocessing of Low-Quality Handwritten Documents Using Markov Random Fields
    Cao, Huaigu
    Govindaraju, Venu
    [J]. IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2009, 31 (07) : 1184 - 1194
  • [2] Chen XR, 2004, PROC CVPR IEEE, P366
  • [3] Dong-Qing Zhang SC, 2004, LEARNING DETECT SCEN, P101
  • [4] Epshtein B, 2010, PROC CVPR IEEE, P2963, DOI 10.1109/CVPR.2010.5540041
  • [5] Efficient belief propagation for early vision
    Felzenszwalb, Pedro F.
    Huttenlocher, Daniel P.
    [J]. INTERNATIONAL JOURNAL OF COMPUTER VISION, 2006, 70 (01) : 41 - 54
  • [6] Scene Text Extraction using Image Intensity and Color Information
    Lee, SeongHun
    Seok, JaeHyun
    Min, KyungMin
    Kim, JinHyung
    [J]. PROCEEDINGS OF THE 2009 CHINESE CONFERENCE ON PATTERN RECOGNITION AND THE FIRST CJK JOINT WORKSHOP ON PATTERN RECOGNITION, VOLS 1 AND 2, 2009, : 906 - 910
  • [7] Li S. Z., 1994, Computer Vision - ECCV '94. Third European Conference on Computer Vision. Proceedings. Vol.II, P361, DOI 10.1007/BFb0028368
  • [8] Camera-based analysis of text and documents: A survey
    Liang J.
    Doermann D.
    Li H.
    [J]. International Journal of Document Analysis and Recognition (IJDAR), 2005, 7 (2-3): : 84 - 104
  • [9] ICDAR 2003 robust reading competitions: Entries, results, and future directions
    Lucas S.M.
    Panaretos A.
    Sosa L.
    Tang A.
    Wong S.
    Young R.
    Ashida K.
    Nagai H.
    Okamoto M.
    Yamamoto H.
    Miyao H.
    Zhu J.
    Ou W.
    Wolf C.
    Jolion J.-M.
    Todoran L.
    Worring M.
    Lin X.
    [J]. International Journal of Document Analysis and Recognition (IJDAR), 2005, 7 (2-3): : 105 - 122
  • [10] ICDAR 2005 text locating competition results
    Lucas, SM
    [J]. EIGHTH INTERNATIONAL CONFERENCE ON DOCUMENT ANALYSIS AND RECOGNITION, VOLS 1 AND 2, PROCEEDINGS, 2005, : 80 - 84