Metrics with equatorial singularities on the sphere

被引:4
作者
Bonnard, B. [1 ]
Caillau, J. -B. [1 ]
机构
[1] Univ Bourgogne, CNRS, Math Inst, F-21078 Dijon, France
关键词
Two-sphere of revolution; Almost- and sub-Riemannian metrics; Cut and conjugate locus; ENERGY MINIMIZATION; REVOLUTION; 2-SPHERE;
D O I
10.1007/s10231-013-0333-y
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Motivated by optimal control of affine systems stemming from mechanics, metrics on the two-sphere of revolution are considered; these metrics are Riemannian on each open hemisphere, whereas one term of the corresponding tensor becomes infinite on the equator. Length-minimizing curves are computed, and structure results on the cut and conjugate loci are given, extending those in Bonnard et al. (Ann Inst H Poincare, Anal Non Lineaire 26(4):1081-1098, 2009). These results rely on monotonicity and convexity properties of the quasi-period of the geodesics; such properties are studied on an example with elliptic transcendency. A suitable deformation of the round sphere allows to reinterpretate the equatorial singularity in terms of concentration of curvature and collapsing of the sphere onto a two-dimensional billiard.
引用
收藏
页码:1353 / 1382
页数:30
相关论文
共 36 条
  • [1] Agrachev A., 2004, Control Theory From the Geometric Viewpoint
  • [2] Agrachev A., 1997, ESAIM: Control, V2, P377
  • [3] Two-dimensional almost-Riemannian structures with tangency points
    Agrachev, A. A.
    Boscain, U.
    Charlot, G.
    Ghezzi, R.
    Sigalotti, M.
    [J]. ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2010, 27 (03): : 793 - 807
  • [4] AGRACHEV AA, 2001, DOKL AKAD NAUK, V381, P583
  • [5] Agrachev A, 2008, DISCRETE CONT DYN-A, V20, P801
  • [6] Bellaiche A., 1996, Sub-riemannian geometry, P1
  • [7] Besson G., 1991, SEMIN THEOR SPECTR S, P33
  • [8] Bonnard B, 2010, COMMUN INF SYST, V10, P239
  • [9] The sphere and the cut locus at a tangency point in two-dimensional almost-Riemannian geometry
    Bonnard, B.
    Charlot, G.
    Ghezzi, R.
    Janin, G.
    [J]. JOURNAL OF DYNAMICAL AND CONTROL SYSTEMS, 2011, 17 (01) : 141 - 161
  • [10] BONNARD B, 2011, DISCRETE CONT S SEP, P198