Atmospheric stability and topography effects on wind turbine performance and wake properties in complex terrain

被引:64
|
作者
Han, Xingxing [1 ]
Liu, Deyou [1 ]
Xu, Chang [1 ]
Shen, Wen Zhong [2 ]
机构
[1] Hohai Univ, Coll Water Conservancy & Hydropower Engn, 1 Xikang Rd, Nanjing 210098, Jiangsu, Peoples R China
[2] Tech Univ Denmark, Dept Wind Energy, Lyngby, Denmark
关键词
Atmospheric stability; Wind turbine performance; Thrust measurements; Wind turbine wakes; Complex terrain; TURBULENCE; DISSIPATION;
D O I
10.1016/j.renene.2018.03.048
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
This paper evaluates the influence of atmospheric stability and topography on wind turbine performance and wake properties in complex terrain. To assess atmospheric stability effects on wind turbine performance, an equivalent wind speed calculated with the power output and the manufacture power curve is proposed and calibrated with the mast hub-height wind speed. After estimating the thrust coefficient and turbulence dissipation, this paper examines wind turbine performance curves and wake profiles segregated by atmospheric stability. Results show that the equivalent wind speed at a given mast wind speed can increase by 2% under stable conditions and decrease by 5% under unstable conditions as compared with that under neutral conditions, yielding about 16% reductions of power output and thrust coefficient from stable conditions to unstable conditions. Due to the lower thrust coefficient and the enhanced turbulence, the wind turbine wakes are found to recover faster under unstable conditions than under other stability conditions. Differences in wind turbine performance and asymmetric wake profiles due to topographic effects are also observed. Results suggest that atmospheric stability and topography have significant influences on wind turbine performance and wake properties. Considering effects of atmospheric stability and topography will benefit the wind resource assessment in complex terrain. (C) 2018 Elsevier Ltd. All rights reserved.
引用
收藏
页码:640 / 651
页数:12
相关论文
共 50 条
  • [1] Assessment of Wind over Complex Terrain Considering the Effects of Topography, Atmospheric Stability and Turbine Wakes
    Yamaguchi, Atsushi
    Tavana, Alireza
    Ishihara, Takeshi
    ATMOSPHERE, 2024, 15 (06)
  • [2] Meso- to microscale modeling of atmospheric stability effects on wind turbine wake behavior in complex terrain
    Wise, Adam S.
    Neher, James M. T.
    Arthur, Robert S.
    Mirocha, Jeffrey D.
    Lundquist, Julie K.
    Chow, Fotini K.
    WIND ENERGY SCIENCE, 2022, 7 (01) : 367 - 386
  • [3] Impact of atmospheric stability, wake effect and topography on power production at complex-terrain wind farm
    Pacheco de Sa Sarmiento, Franciene Izis
    Goes Oliveira, Jorge Luiz
    Passos, Julio Cesar
    ENERGY, 2022, 239
  • [4] Influence of atmospheric stability on wind farm performance in complex terrain
    Radunz, William Correa
    Sakagami, Yoshiaki
    Haas, Reinaldo
    Petry, Adriane Prisco
    Passos, Julio Cesar
    Miqueletti, Mayara
    Dias, Eduardo
    APPLIED ENERGY, 2021, 282
  • [5] Investigation into wind turbine wake effect on complex terrain
    Sun, Haiying
    Yang, Hongxing
    Gao, Xiaoxia
    ENERGY, 2023, 269
  • [6] Automated wind turbine wake characterization in complex terrain
    Barthelmie, Rebecca J.
    Pryor, Sara C.
    ATMOSPHERIC MEASUREMENT TECHNIQUES, 2019, 12 (06) : 3463 - 3484
  • [7] The variability of wind resources in complex terrain and its relationship with atmospheric stability
    Radunz, William Correa
    Sakagami, Yoshiaki
    Haas, Reinaldo
    Petry, Adriane Prisco
    Passos, Julio Cesar
    Miqueletti, Mayara
    Dias, Eduardo
    ENERGY CONVERSION AND MANAGEMENT, 2020, 222
  • [8] Impact of atmospheric stability on wind turbine wake evolution
    Subramanian, B.
    Chokani, N.
    Abhari, R. S.
    JOURNAL OF WIND ENGINEERING AND INDUSTRIAL AERODYNAMICS, 2018, 176 : 174 - 182
  • [9] A Nonlinear Wind Turbine Wake Expansion Model Considering Atmospheric Stability and Ground Effects
    Han, Xingxing
    Wang, Tongguang
    Ma, Xiandong
    Xu, Chang
    Fu, Shifeng
    Zhang, Jinmeng
    Xue, Feifei
    Cheng, Zhe
    ENERGIES, 2024, 17 (17)
  • [10] On the Wind Turbine Wake and Forest Terrain Interaction
    Cheng, Shyuan
    Elgendi, Mahmoud
    Lu, Fanghan
    Chamorro, Leonardo P.
    ENERGIES, 2021, 14 (21)