Decoding fear of negative evaluation from brain morphology: A machine-learning study on structural neuroimaging data

被引:0
作者
Feng, Chunliang [1 ,2 ]
Krueger, Frank [3 ,4 ]
Gu, Ruolei [5 ,6 ]
Luo, Wenbo [7 ]
机构
[1] South China Normal Univ, Key Lab Brain Cognit & Educ Sci, Minist Educ, Guangzhou 510631, Peoples R China
[2] South China Normal Univ, Guangdong Prov Key Lab Mental Hlth & Cognit Sci, Ctr Studies Psychol Applicat, Sch Psychol, Guangzhou 510631, Peoples R China
[3] George Mason Univ, Sch Syst Biol, Fairfax, VA 22030 USA
[4] George Mason Univ Mannheim, Dept Psychol, D-68159 Mannheim, Germany
[5] Chinese Acad Sci, Inst Psychol, Key Lab Behav Sci, Beijing 100101, Peoples R China
[6] Univ Chinese Acad Sci, Dept Psychol, Beijing 100101, Peoples R China
[7] Liaoning Normal Univ, Res Ctr Brain & Cognit Neurosci, Dalian 116029, Peoples R China
基金
中国国家自然科学基金;
关键词
fear of negative evaluation; social anxiety; structural magnetic resonance imaging; machine learning; relevance vector regression; MEDIAL PREFRONTAL CORTEX; SOCIAL-ANXIETY; EVALUATION-SCALE; FUNCTIONAL CONNECTIVITY; INCREASED AMYGDALA; EXECUTIVE CONTROL; EMOTIONAL MEMORY; TRAIT ANXIETY; BRIEF VERSION; STATE;
D O I
10.15302/J-QB-021-0266
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
Background: Fear of negative evaluation (FNE), referring to negative expectation and feelings toward other people's social evaluation, is closely associated with social anxiety that plays an important role in our social life. Exploring the neural markers of FNE may be of theoretical and practical significance to psychiatry research (e.g., studies on social anxiety). Methods: To search for potentially relevant biomarkers of FNE in human brain, the current study applied multivariate relevance vector regression, a machine-learning and data-driven approach, on brain morphological features (e.g., cortical thickness) derived from structural imaging data; further, we used these features as indexes to predict self-reported FNE score in each participant. Results: Our results confirm the predictive power of multiple brain regions, including those engaged in negative emotional experience (e.g., amygdala, insula), regulation and inhibition of emotional feeling (e.g., frontal gyrus, anterior cingulate gyrus), and encoding and retrieval of emotional memory (e.g., posterior cingulate cortex, parahippocampal gyrus). Conclusions: The current findings suggest that anxiety represents a complicated construct that engages multiple brain systems, from primitive subcortical mechanisms to sophisticated cortical processes.
引用
收藏
页码:390 / 402
页数:13
相关论文
共 50 条
[41]   Individualized Prediction of Vulnerability to Bipolar Disorders Using Structural Neuroimaging Patterns From 307 Individuals and Machine Learning [J].
Mwangi, Benson ;
Wu, Mon-Ju ;
Passos, Ives C. ;
Cao, Bo ;
Zunta-Soares, Giovana B. ;
Soares, Jair C. .
BIOLOGICAL PSYCHIATRY, 2016, 79 (09) :250S-250S
[42]   Individualized Prediction of Vulnerability to Bipolar Disorders Using Structural Neuroimaging Patterns from 307 Individuals and Machine Learning [J].
Mwangi, Benson ;
Wu, Mon-Ju ;
Passos, Ives ;
Cao, Bo ;
Zunta-Soares, Giovana ;
Soares, Jair .
NEUROPSYCHOPHARMACOLOGY, 2015, 40 :S333-S334
[43]   Connectivity of the anterior insula differentiates participants with first-episode schizophrenia spectrum disorders from controls: a machine-learning study [J].
Mikolas, P. ;
Melicher, T. ;
Skoch, A. ;
Matejka, M. ;
Slovakova, A. ;
Bakstein, E. ;
Hajek, T. ;
Spaniel, F. .
PSYCHOLOGICAL MEDICINE, 2016, 46 (13) :2695-2704
[44]   Generating Research Questions from Digital Trace Data: A Machine-Learning Method for Discovering Patterns in a Dynamic Environment [J].
Kallio, Henrik ;
Malo, Pekka ;
Lainema, Timo ;
Bragge, Johanna ;
Seppala, Tomi ;
Penttinen, Esko .
COMMUNICATIONS OF THE ASSOCIATION FOR INFORMATION SYSTEMS, 2022, 51 :564-589
[45]   Machine-Learning Model for Prediction of Cefepime Susceptibility in Escherichia coli from Whole-Genome Sequencing Data [J].
Humphries, Romney M. ;
Bragin, Eugene ;
Parkhill, Julian ;
Morales, Grace ;
Schmitz, Jonathan E. ;
Rhodes, Paul A. .
JOURNAL OF CLINICAL MICROBIOLOGY, 2023, 61 (03)
[46]   Can we diagnose mental disorders in children? A large-scale assessment of machine learning on structural neuroimaging of 6916 children in the adolescent brain cognitive development study [J].
Gaus, Richard ;
Poelsterl, Sebastian ;
Greimel, Ellen ;
Schulte-Koerne, Gerd ;
Wachinger, Christian .
JCPP ADVANCES, 2023, 3 (04)
[47]   A machine-learning approach for differentiating borderline personality disorder from community participants with brain-wide functional connectivity [J].
Lahnakoski, Juha M. ;
Nolte, Tobias ;
Solway, Alec ;
Vilares, Iris ;
Hula, Andreas ;
Feigenbaum, Janet ;
Lohrenz, Terry ;
King-Casas, Brooks ;
Fonagy, Peter ;
Montague, P. Read ;
Schilbach, Leonhard .
JOURNAL OF AFFECTIVE DISORDERS, 2024, 360 :345-353
[48]   From data to diagnosis: evaluation of machine learning models in predicting kidney stones [J].
Iparraguirre-Villanueva, Orlando ;
Paucar-Palomino, George ;
Paulino-Moreno, Cleoge .
Neural Computing and Applications, 2025, 37 (15) :9049-9062
[49]   Accurate Prediction of Coronary Heart Disease for Patients With Hypertension From Electronic Health Records With Big Data and Machine-Learning Methods: Model Development and Performance Evaluation [J].
Du, Zhenzhen ;
Yang, Yujie ;
Zheng, Jing ;
Li, Qi ;
Lin, Denan ;
Li, Ye ;
Fan, Jianping ;
Cheng, Wen ;
Chen, Xie-Hui ;
Cai, Yunpeng .
JMIR MEDICAL INFORMATICS, 2020, 8 (07)
[50]   Machine-learning local resistive environments of dislocations in complex concentrated alloys from data generated by molecular dynamics simulations [J].
Li, Wei ;
Ngan, Alfonso H. W. ;
Zhang, Yuqi .
INTERNATIONAL JOURNAL OF PLASTICITY, 2025, 187