Decoding fear of negative evaluation from brain morphology: A machine-learning study on structural neuroimaging data

被引:0
作者
Feng, Chunliang [1 ,2 ]
Krueger, Frank [3 ,4 ]
Gu, Ruolei [5 ,6 ]
Luo, Wenbo [7 ]
机构
[1] South China Normal Univ, Key Lab Brain Cognit & Educ Sci, Minist Educ, Guangzhou 510631, Peoples R China
[2] South China Normal Univ, Guangdong Prov Key Lab Mental Hlth & Cognit Sci, Ctr Studies Psychol Applicat, Sch Psychol, Guangzhou 510631, Peoples R China
[3] George Mason Univ, Sch Syst Biol, Fairfax, VA 22030 USA
[4] George Mason Univ Mannheim, Dept Psychol, D-68159 Mannheim, Germany
[5] Chinese Acad Sci, Inst Psychol, Key Lab Behav Sci, Beijing 100101, Peoples R China
[6] Univ Chinese Acad Sci, Dept Psychol, Beijing 100101, Peoples R China
[7] Liaoning Normal Univ, Res Ctr Brain & Cognit Neurosci, Dalian 116029, Peoples R China
基金
中国国家自然科学基金;
关键词
fear of negative evaluation; social anxiety; structural magnetic resonance imaging; machine learning; relevance vector regression; MEDIAL PREFRONTAL CORTEX; SOCIAL-ANXIETY; EVALUATION-SCALE; FUNCTIONAL CONNECTIVITY; INCREASED AMYGDALA; EXECUTIVE CONTROL; EMOTIONAL MEMORY; TRAIT ANXIETY; BRIEF VERSION; STATE;
D O I
10.15302/J-QB-021-0266
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
Background: Fear of negative evaluation (FNE), referring to negative expectation and feelings toward other people's social evaluation, is closely associated with social anxiety that plays an important role in our social life. Exploring the neural markers of FNE may be of theoretical and practical significance to psychiatry research (e.g., studies on social anxiety). Methods: To search for potentially relevant biomarkers of FNE in human brain, the current study applied multivariate relevance vector regression, a machine-learning and data-driven approach, on brain morphological features (e.g., cortical thickness) derived from structural imaging data; further, we used these features as indexes to predict self-reported FNE score in each participant. Results: Our results confirm the predictive power of multiple brain regions, including those engaged in negative emotional experience (e.g., amygdala, insula), regulation and inhibition of emotional feeling (e.g., frontal gyrus, anterior cingulate gyrus), and encoding and retrieval of emotional memory (e.g., posterior cingulate cortex, parahippocampal gyrus). Conclusions: The current findings suggest that anxiety represents a complicated construct that engages multiple brain systems, from primitive subcortical mechanisms to sophisticated cortical processes.
引用
收藏
页码:390 / 402
页数:13
相关论文
共 50 条
  • [21] Predicting bacterial virulence factors - evaluation of machine learning and negative data strategies
    Rentzsch, Robert
    Deneke, Carlus
    Nitsche, Andreas
    Renard, Bernhard Y.
    BRIEFINGS IN BIOINFORMATICS, 2020, 21 (05) : 1596 - 1608
  • [22] Structural brain changes versus self-report: machine-learning classification of chronic fatigue syndrome patients
    Sevel, Landrew S.
    Boissoneault, Jeff
    Letzen, Janelle E.
    Robinson, Michael E.
    Staud, Roland
    EXPERIMENTAL BRAIN RESEARCH, 2018, 236 (08) : 2245 - 2253
  • [23] Structural brain changes versus self-report: machine-learning classification of chronic fatigue syndrome patients
    Landrew S. Sevel
    Jeff Boissoneault
    Janelle E. Letzen
    Michael E. Robinson
    Roland Staud
    Experimental Brain Research, 2018, 236 : 2245 - 2253
  • [24] Unveiling the potential of machine learning in schizophrenia diagnosis: A meta-analytic study of task-based neuroimaging data
    Wang, Xuan
    Yan, Chao
    Yang, Peng-yuan
    Xia, Zheng
    Cai, Xin-lu
    Wang, Yi
    Kwok, Sze Chai
    Chan, Raymond C. K.
    PSYCHIATRY AND CLINICAL NEUROSCIENCES, 2024, 78 (03) : 157 - 168
  • [25] Evaluation of Nonparametric Machine-Learning Algorithms for an Optimal Crop Classification Using Big Data Reduction Strategy
    Al-Awar B.
    Awad M.M.
    Jarlan L.
    Courault D.
    Remote Sensing in Earth Systems Sciences, 2022, 5 (3) : 141 - 153
  • [26] Evaluation and comparison of different machine-learning methods to integrate sparse process data into a spatial model in geometallurgy
    Lishchuk, Viktor
    Lund, Cecilia
    Ghorbani, Yousef
    MINERALS ENGINEERING, 2019, 134 : 156 - 165
  • [27] Evaluation of Machine-Learning Models for Predicting Aeolian Dust: A Case Study over the Southwestern USA
    Aryal, Yog
    CLIMATE, 2022, 10 (06)
  • [28] Machine Learning Classification of Obsessive-Compulsive Disorder Using Structural Neuroimaging Data: ENIGMA Working Group
    Bruin, Willem
    Shock, Jonathan
    Thomas, Rajat
    Groenewold, Nynke
    Boedhoe, Premika
    Thompson, Paul M.
    van den Heuvel, Odile
    Stein, Dan J.
    van Wingen, Guido
    BIOLOGICAL PSYCHIATRY, 2019, 85 (10) : S32 - S32
  • [29] Applying Machine-Learning Methods to Laser Acceleration of Protons: Lessons Learned From Synthetic Data
    Desai, Ronak
    Zhang, Thomas
    Felice, John J.
    Oropeza, Ricky
    Smith, Joseph R.
    Kryshchenko, Alona
    Orban, Chris
    Dexter, Michael L.
    Patnaik, Anil K.
    CONTRIBUTIONS TO PLASMA PHYSICS, 2025, 65 (03)
  • [30] Mapping of karst sinkholes from LIDAR data using machine-learning methods in the Trieste area
    Creati, N.
    Paganini, P.
    Sterzai, P.
    Pavan, A.
    JOURNAL OF SPATIAL SCIENCE, 2025,