Decoding fear of negative evaluation from brain morphology: A machine-learning study on structural neuroimaging data

被引:0
作者
Feng, Chunliang [1 ,2 ]
Krueger, Frank [3 ,4 ]
Gu, Ruolei [5 ,6 ]
Luo, Wenbo [7 ]
机构
[1] South China Normal Univ, Key Lab Brain Cognit & Educ Sci, Minist Educ, Guangzhou 510631, Peoples R China
[2] South China Normal Univ, Guangdong Prov Key Lab Mental Hlth & Cognit Sci, Ctr Studies Psychol Applicat, Sch Psychol, Guangzhou 510631, Peoples R China
[3] George Mason Univ, Sch Syst Biol, Fairfax, VA 22030 USA
[4] George Mason Univ Mannheim, Dept Psychol, D-68159 Mannheim, Germany
[5] Chinese Acad Sci, Inst Psychol, Key Lab Behav Sci, Beijing 100101, Peoples R China
[6] Univ Chinese Acad Sci, Dept Psychol, Beijing 100101, Peoples R China
[7] Liaoning Normal Univ, Res Ctr Brain & Cognit Neurosci, Dalian 116029, Peoples R China
基金
中国国家自然科学基金;
关键词
fear of negative evaluation; social anxiety; structural magnetic resonance imaging; machine learning; relevance vector regression; MEDIAL PREFRONTAL CORTEX; SOCIAL-ANXIETY; EVALUATION-SCALE; FUNCTIONAL CONNECTIVITY; INCREASED AMYGDALA; EXECUTIVE CONTROL; EMOTIONAL MEMORY; TRAIT ANXIETY; BRIEF VERSION; STATE;
D O I
10.15302/J-QB-021-0266
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
Background: Fear of negative evaluation (FNE), referring to negative expectation and feelings toward other people's social evaluation, is closely associated with social anxiety that plays an important role in our social life. Exploring the neural markers of FNE may be of theoretical and practical significance to psychiatry research (e.g., studies on social anxiety). Methods: To search for potentially relevant biomarkers of FNE in human brain, the current study applied multivariate relevance vector regression, a machine-learning and data-driven approach, on brain morphological features (e.g., cortical thickness) derived from structural imaging data; further, we used these features as indexes to predict self-reported FNE score in each participant. Results: Our results confirm the predictive power of multiple brain regions, including those engaged in negative emotional experience (e.g., amygdala, insula), regulation and inhibition of emotional feeling (e.g., frontal gyrus, anterior cingulate gyrus), and encoding and retrieval of emotional memory (e.g., posterior cingulate cortex, parahippocampal gyrus). Conclusions: The current findings suggest that anxiety represents a complicated construct that engages multiple brain systems, from primitive subcortical mechanisms to sophisticated cortical processes.
引用
收藏
页码:390 / 402
页数:13
相关论文
共 50 条
[21]   Machine-learning algorithms in screening for type 2 diabetes mellitus: Data from Fasa Adults Cohort Study [J].
Karmand, Hanieh ;
Andishgar, Aref ;
Tabrizi, Reza ;
Sadeghi, Alireza ;
Pezeshki, Babak ;
Ravankhah, Mahdi ;
Taherifard, Erfan ;
Ahmadizar, Fariba .
ENDOCRINOLOGY DIABETES & METABOLISM, 2024, 7 (02)
[22]   Decoding Depression from Different Brain Regions Using Hybrid Machine Learning Methods [J].
Sang, Qi ;
Chen, Chen ;
Shao, Zeguo .
BIOENGINEERING-BASEL, 2025, 12 (05)
[23]   Fear of Negative Evaluation Biases Social Evaluation Inference: Evidence from a Probabilistic Learning Task [J].
Button, Katherine S. ;
Kounali, Daphne ;
Stapinski, Lexine ;
Rapee, Ronald M. ;
Lewis, Glyn ;
Munafo, Marcus R. .
PLOS ONE, 2015, 10 (04)
[24]   Comparing intra- and inter-individual correlational brain connectivity from functional and structural neuroimaging data [J].
Di, Xin ;
Biswal, Bharat B. .
BRAIN STRUCTURE & FUNCTION, 2025, 230 (06) :113
[25]   An Exploration of Machine-Learning Estimation of Ground Reaction Force from Wearable Sensor Data [J].
Hendry, Danica ;
Leadbetter, Ryan ;
McKee, Kristoffer ;
Hopper, Luke ;
Wild, Catherine ;
O'Sullivan, Peter ;
Straker, Leon ;
Campbell, Amity .
SENSORS, 2020, 20 (03)
[26]   Predicting bacterial virulence factors - evaluation of machine learning and negative data strategies [J].
Rentzsch, Robert ;
Deneke, Carlus ;
Nitsche, Andreas ;
Renard, Bernhard Y. .
BRIEFINGS IN BIOINFORMATICS, 2020, 21 (05) :1596-1608
[27]   Structural brain changes versus self-report: machine-learning classification of chronic fatigue syndrome patients [J].
Sevel, Landrew S. ;
Boissoneault, Jeff ;
Letzen, Janelle E. ;
Robinson, Michael E. ;
Staud, Roland .
EXPERIMENTAL BRAIN RESEARCH, 2018, 236 (08) :2245-2253
[28]   Structural brain changes versus self-report: machine-learning classification of chronic fatigue syndrome patients [J].
Landrew S. Sevel ;
Jeff Boissoneault ;
Janelle E. Letzen ;
Michael E. Robinson ;
Roland Staud .
Experimental Brain Research, 2018, 236 :2245-2253
[29]   Unveiling the potential of machine learning in schizophrenia diagnosis: A meta-analytic study of task-based neuroimaging data [J].
Wang, Xuan ;
Yan, Chao ;
Yang, Peng-yuan ;
Xia, Zheng ;
Cai, Xin-lu ;
Wang, Yi ;
Kwok, Sze Chai ;
Chan, Raymond C. K. .
PSYCHIATRY AND CLINICAL NEUROSCIENCES, 2024, 78 (03) :157-168
[30]   Evaluation of Nonparametric Machine-Learning Algorithms for an Optimal Crop Classification Using Big Data Reduction Strategy [J].
Al-Awar B. ;
Awad M.M. ;
Jarlan L. ;
Courault D. .
Remote Sensing in Earth Systems Sciences, 2022, 5 (3) :141-153