Confining Silicon Nanoparticles within Freestanding Multichannel Carbon Fibers for High-Performance Li-Ion Batteries

被引:23
|
作者
Chen, Xiao [1 ]
Hu, Pei [2 ]
Xiang, Jingwei [2 ]
Zhang, Renyuan [1 ]
Huang, Yunhui [1 ,2 ]
机构
[1] Tongji Univ, Sch Mat Sci & Engn, Shanghai Key Lab R&D & Applicat Metall Funct Mat, Inst New Energy Vehicles, Shanghai 201804, Peoples R China
[2] Huazhong Univ Sci & Technol, Sch Mat Sci & Engn, Wuhan 430074, Hubei, Peoples R China
基金
中国国家自然科学基金;
关键词
Li-ion batteries; multichannel structure; Si-based anodes; freestanding; electrospinning; nanofibers; HIGH-CAPACITY; HIGH-ENERGY; LITHIUM; ANODE; GRAPHENE; NANOWIRES; SI; NANOCOMPOSITE; ELECTRODES; NANOTUBES;
D O I
10.1021/acsaem.9b00898
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
With the properties of high specific capacity and low charge potential, silicon has been considered as one of the most promising candidates to replace the commercial graphite anode. However, the application of the silicon-based anode has been restricted by poor electronic conductivity and tremendous volume variation during its lithiation/delithiation, which leads to an unstable solid electrolyte interphase (SEI) and more side-reactions as well. To solve those challenges, herein, we synthesize multichannel carbon fibers (MC-CNFs) via a facile electrospinning-carbonization method and use it as a freestanding host for silicon nanoparticles (Si NPs). The Si NPs are distributed in the MC-CNFs to buffer their volumetric stresses and to stabilize the SEI layers, while the interconnected structure of the carbon fibers can effectively increase the conductivity of the composite electrodes. On fabricating a coin-type cell, the MC-CNF confined Si NP (Si@MC-CNFs) anode with an initial capacity of 1400 mAh g(-1) and an initial Coulombic efficiency (ICE) of 87% delivers good cycle stability and rate performance.
引用
收藏
页码:5214 / 5218
页数:9
相关论文
共 50 条
  • [41] Petrochemical-waste-derived high-performance anode material for Li-ion batteries
    Ko, Seunghyun
    Lee, Chul Wee
    Irm, Ji Sun
    JOURNAL OF INDUSTRIAL AND ENGINEERING CHEMISTRY, 2016, 36 : 125 - 131
  • [42] Silicon disulfide for high-performance Li-ion batteries and solid-state electrolytes
    Nam, Ki-Hun
    Kim, Do-Hyeon
    Lee, Young-Han
    Han, Su Choel
    Choi, Jeong-Hee
    Ha, Yoon-Cheol
    Park, Cheol-Min
    JOURNAL OF MATERIALS CHEMISTRY A, 2023, 11 (10) : 4987 - 5000
  • [43] First Principles Study of Penta-siligraphene as High-Performance Anode Material for Li-Ion Batteries
    Wang, Hewen
    Wu, Musheng
    Tian, Zhengfang
    Xu, Bo
    Ouyang, Chuying
    NANOSCALE RESEARCH LETTERS, 2019, 14 (1):
  • [44] Silicon nanoparticles supported on graphitic carbon paper as a hybrid anode for Li-ion batteries
    Fu, Yongzhu
    Manthiram, Arumugam
    NANO ENERGY, 2013, 2 (06) : 1107 - 1112
  • [45] Freestanding Flexible Si Nanoparticles-Multiwalled Carbon Nanotubes Composite Anodes for Li-Ion Batteries and Their Prelithiation by Stabilized Li Metal Powder
    Yao, K.
    Liang, R.
    Zheng, J. P.
    JOURNAL OF ELECTROCHEMICAL ENERGY CONVERSION AND STORAGE, 2016, 13 (01)
  • [46] Freestanding and Consecutive Intermixed N-Doped Hard Carbon@Soft Carbon Fiber Architectures as Ultrastable Anodes for High-Performance Li-Ion Batteries
    Wang, Peng-Fei
    Li, Ying
    Tian, Shu-Hui
    Wang, Jian-Cang
    Qiu, Feilong
    Zhu, Yan-Rong
    Yi, Ting-Feng
    He, Ping
    ENERGY & FUELS, 2023, 37 (19) : 15170 - 15178
  • [47] Mesoporous nitrogen-doped carbon MnO2 multichannel nanotubes with high performance for Li-ion batteries
    Yuan, Xunlong
    Ma, Ziting
    Jian, Shuofeng
    Ma, Hui
    Lai, Yanan
    Deng, Shuolei
    Tian, Xiaocong
    Wong, Ching-Ping
    Xia, Fan
    Dong, Yifan
    NANO ENERGY, 2022, 97
  • [48] Graphene caging silicon nanoparticles anchored on graphene sheets for high performance Li-ion batteries
    Han, Xin-Yao
    Zhao, Dong-Lin
    Meng, Wen-Jie
    Yang, Hui-Xian
    Zhao, Min
    Duan, Ya-Jing
    Tian, Xin-Min
    APPLIED SURFACE SCIENCE, 2019, 484 : 11 - 20
  • [49] Self-assembly of Si entrapped graphene architecture for high-performance Li-ion batteries
    Park, Sang-Hoon
    Kim, Hyun-Kyung
    Ahn, Dong-Joon
    Lee, Sang-Ick
    Roh, Kwang Chul
    Kim, Kwang-Bum
    ELECTROCHEMISTRY COMMUNICATIONS, 2013, 34 : 117 - 120
  • [50] Facile Synthesis of SiO2@ C Nanoparticles Anchored on MWNT as High-Performance Anode Materials for Li-ion Batteries
    Zhao, Yan
    Liu, Zhengjun
    Zhang, Yongguang
    Mentbayeva, Almagul
    Wang, Xin
    Maximov, M. Yu.
    Liu, Baoxi
    Bakenov, Zhumabay
    Yin, Fuxing
    NANOSCALE RESEARCH LETTERS, 2017, 12