Confining Silicon Nanoparticles within Freestanding Multichannel Carbon Fibers for High-Performance Li-Ion Batteries

被引:23
|
作者
Chen, Xiao [1 ]
Hu, Pei [2 ]
Xiang, Jingwei [2 ]
Zhang, Renyuan [1 ]
Huang, Yunhui [1 ,2 ]
机构
[1] Tongji Univ, Sch Mat Sci & Engn, Shanghai Key Lab R&D & Applicat Metall Funct Mat, Inst New Energy Vehicles, Shanghai 201804, Peoples R China
[2] Huazhong Univ Sci & Technol, Sch Mat Sci & Engn, Wuhan 430074, Hubei, Peoples R China
基金
中国国家自然科学基金;
关键词
Li-ion batteries; multichannel structure; Si-based anodes; freestanding; electrospinning; nanofibers; HIGH-CAPACITY; HIGH-ENERGY; LITHIUM; ANODE; GRAPHENE; NANOWIRES; SI; NANOCOMPOSITE; ELECTRODES; NANOTUBES;
D O I
10.1021/acsaem.9b00898
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
With the properties of high specific capacity and low charge potential, silicon has been considered as one of the most promising candidates to replace the commercial graphite anode. However, the application of the silicon-based anode has been restricted by poor electronic conductivity and tremendous volume variation during its lithiation/delithiation, which leads to an unstable solid electrolyte interphase (SEI) and more side-reactions as well. To solve those challenges, herein, we synthesize multichannel carbon fibers (MC-CNFs) via a facile electrospinning-carbonization method and use it as a freestanding host for silicon nanoparticles (Si NPs). The Si NPs are distributed in the MC-CNFs to buffer their volumetric stresses and to stabilize the SEI layers, while the interconnected structure of the carbon fibers can effectively increase the conductivity of the composite electrodes. On fabricating a coin-type cell, the MC-CNF confined Si NP (Si@MC-CNFs) anode with an initial capacity of 1400 mAh g(-1) and an initial Coulombic efficiency (ICE) of 87% delivers good cycle stability and rate performance.
引用
收藏
页码:5214 / 5218
页数:9
相关论文
共 50 条
  • [1] Deposition of silver nanoparticles into silicon/carbon composite as a high-performance anode material for Li-ion batteries
    Hou, Xianhua
    Zhang, Miao
    Wang, Jiyun
    Hu, Shejun
    Liu, Xiang
    JOURNAL OF SOLID STATE ELECTROCHEMISTRY, 2015, 19 (12) : 3595 - 3604
  • [2] Freestanding silicon/carbon nanofibers composite membrane as a flexible anode for Li-Ion battery
    Qu, Erli
    Chen, Tao
    Xiao, Qizhen
    Lei, Gangtie
    Li, Zhaohui
    JOURNAL OF POWER SOURCES, 2018, 403 : 103 - 108
  • [3] Encapsulation and networking of silicon nanoparticles using amorphous carbon and graphite for high performance Li-ion batteries
    Parekh, Mihit H.
    Parikh, Vihang P.
    Kim, Patrick J.
    Misra, Shikhar
    Qi, Zhimin
    Wang, Haiyan
    Pol, Vilas G.
    CARBON, 2019, 148 : 36 - 43
  • [4] Amorphous GaN@Cu Freestanding Electrode for High-Performance Li-Ion Batteries
    Ni, Shibing
    Huang, Peng
    Chao, Dongliang
    Yuan, Guodong
    Zhang, Lichun
    Zhao, Fengzhou
    Li, Jinmin
    ADVANCED FUNCTIONAL MATERIALS, 2017, 27 (35)
  • [5] Deposition of silver nanoparticles into silicon/carbon composite as a high-performance anode material for Li-ion batteries
    Xianhua Hou
    Miao Zhang
    Jiyun Wang
    Shejun Hu
    Xiang Liu
    Journal of Solid State Electrochemistry, 2015, 19 : 3595 - 3604
  • [6] Graphene/Carbon-Coated Si Nanoparticle Hybrids as High-Performance Anode Materials for Li-Ion Batteries
    Zhou, Min
    Cai, Tingwei
    Pu, Fan
    Chen, Hao
    Wang, Zhao
    Zhang, Haiyong
    Guan, Shiyou
    ACS APPLIED MATERIALS & INTERFACES, 2013, 5 (08) : 3449 - 3455
  • [7] Constructing Three-Dimensional Honeycombed Graphene/Silicon Skeletons for High-Performance Li-Ion Batteries
    Chang, Peng
    Liu, Xiaoxiao
    Zhao, Qianjin
    Huang, Yaqun
    Huang, Yunhui
    Hu, Xianluo
    ACS APPLIED MATERIALS & INTERFACES, 2017, 9 (37) : 31879 - 31886
  • [8] Conductive Rigid Skeleton Supported Silicon as High-Performance Li-Ion Battery Anodes
    Chen, Xilin
    Li, Xiaolin
    Ding, Fei
    Xu, Wu
    Xiao, Jie
    Cao, Yuliang
    Meduri, Praveen
    Liu, Jun
    Graff, Gordon L.
    Zhang, Ji-Guang
    NANO LETTERS, 2012, 12 (08) : 4124 - 4130
  • [9] Freestanding nano crystalline Tin@carbon anode electrodes for high capacity Li-ion batteries
    Guler, M. O.
    Guzeler, M.
    Nalci, D.
    Singil, M.
    Alkan, E.
    Dogan, M.
    Guler, A.
    Akbulut, H.
    APPLIED SURFACE SCIENCE, 2018, 446 : 122 - 130
  • [10] High-performance silicon from quartz product waste as an anode material for Li-ion batteries
    Pan, Wenhao
    Cai, Xiaolan
    Yang, Changjiang
    Zhou, Lei
    CERAMICS INTERNATIONAL, 2022, 48 (13) : 19412 - 19423