Development of a finite element biomechanical whole spine model for analyzing lumbar spine loads under caudocephalad acceleration

被引:3
|
作者
Goertz, Alan R. [1 ,3 ]
Yang, King H. [1 ]
Viano, David C. [2 ]
机构
[1] Wayne State Univ, Bioengn Ctr, 818 W Hancock, Detroit, MI 48201 USA
[2] ProBiomechanica LLC, 265 Warrington Rd, Bloomfield Hills, MI 48304 USA
[3] SURVICE Engn Co, 4687 Millennium Dr, Belcamp, MD 21017 USA
来源
BIOMEDICAL PHYSICS & ENGINEERING EXPRESS | 2021年 / 7卷 / 01期
关键词
spine; vertebrae; simulation; human body model; ejection; under-body blast; IED; HUMAN THORACIC SPINE; CERVICAL-SPINE; MECHANICAL-PROPERTIES; STRUCTURAL-PROPERTIES; STRESS-ANALYSIS; HUMAN VERTEBRAE; FLEXION; VALIDATION; DIMENSIONS; EXTENSION;
D O I
10.1088/2057-1976/abc89a
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
Background: Spine injury risk due to military conflict is an ongoing concern among defense organizations throughout the world. A better understanding of spine biomechanics could assist in developing protection devices to reduce injuries caused by caudocephalad acceleration (+Gz) in under-body blasts (UBB). Although some finite element (FE) human models have demonstrated reasonable lumbar spine biofidelity, they were either partial spine models or not validated for UBB-type loading modes at the lumbar functional spinal unit (FSU) level, thus limiting their ability to analyze UBB-associated occupant kinematics. Methods: An FE functional representation of the human spine with simplified geometry was developed to study the lumbar spine responses under +Gz loading. Fifty-seven load curves obtained from post mortem human subject experiments were used to optimize the model. Results: The model was cumulatively validated for compression, flexion, extension, and anterior-, posterior-, and lateral-shears of the lumbar spine and flexion and extension of the cervical spine. The thoracic spine was optimized for flexion and compression. The cumulative CORrelation and Analysis (CORA) rating for the lumbar spine was 0.766 and the cervical spine was 0.818; both surpassed the 0.7 objective goal. The model's element size was confirmed as converged. Conclusions: An FE functional representation of the human spine was developed for +Gz lumbar load analysis. The lumbar and cervical spines were demonstrated to be quantitatively biofidelic to the FSU level for multi-directional loading and bending typically experienced in +Gz loading, filling the capability gap in current models.
引用
收藏
页数:16
相关论文
共 50 条
  • [21] Generating a finite element model of the cervical spine: Estimating muscle forces and internal loads
    Toosizadeh, N.
    Haghpanahi, M.
    SCIENTIA IRANICA, 2011, 18 (06) : 1237 - 1245
  • [22] Generating Finite Element Model of the Cervical Spine, Investigating the Role of the Muscle Forces in flexion/extension
    Haghpanahi, Mohammad
    Toosizadeh, Nima
    PROCEEDINGS OF THE 1ST WSEAS INTERNATIONAL CONFERENCE ON BIOMEDICAL ELECTRONICS AND BIOMEDICAL INFORMATICS, 2008, : 54 - +
  • [23] The biomechanical effects of graded upper articular process arthroplasty on lumbar spine: A finite element study
    Shi, Zewen
    Liu, Jiangtao
    Yu, Xiao
    Jiang, Luyong
    Wu, Haihao
    Pang, Qingjiang
    JOURNAL OF ORTHOPAEDIC SCIENCE, 2020, 25 (05) : 793 - 799
  • [24] Biomechanical analysis of lumbar decompression surgery in relation to degenerative changes in the lumbar spine - Validated finite element analysis
    Li, Quan You
    Kim, Ho-Joong
    Son, Juhyun
    Kang, Kyoung-Tak
    Chang, Bong-Soon
    Lee, Choon-Ki
    Seok, Hyun Sik
    Yeom, Jin S.
    COMPUTERS IN BIOLOGY AND MEDICINE, 2017, 89 : 512 - 519
  • [25] Biomechanical analysis of the lumbar spine on facet joint force and intradiscal pressure - a finite element study
    Kuo, Ching-Sung
    Hu, Hsuan-Teh
    Lin, Ruey-Mo
    Huang, Kuo-Yuan
    Lin, Po-Chun
    Zhong, Zheng-Cheng
    Hseih, Mu-Lin
    BMC MUSCULOSKELETAL DISORDERS, 2010, 11
  • [26] Motion analysis study on sensitivity of finite element model of the cervical spine to geometry
    Zafarparandeh, Iman
    Erbulut, Deniz U.
    Ozer, Ali F.
    PROCEEDINGS OF THE INSTITUTION OF MECHANICAL ENGINEERS PART H-JOURNAL OF ENGINEERING IN MEDICINE, 2016, 230 (07) : 700 - 706
  • [27] BIOMECHANICAL STUDY OF THE CERVICAL SPINE WITH DISC IMPLANTS: A FINITE ELEMENT ANALYSIS
    Szkoda, K.
    Galaska, P.
    Zak, M.
    Pezowicz, C.
    ENGINEERING MECHANICS 2017, 2017, : 966 - 969
  • [28] The Effect of Muscle Direction on the Predictions of Finite Element Model of Human Lumbar Spine
    Zhu, Rui
    Niu, Wen-xin
    Wang, Zhi-peng
    Pei, Xiao-long
    He, Bin
    Zeng, Zhi-li
    Cheng, Li-ming
    BIOMED RESEARCH INTERNATIONAL, 2018, 2018
  • [29] Parametric convergence sensitivity and validation of a finite element model of the human lumbar spine
    Ayturk, Ugur M.
    Puttlitz, Christian M.
    COMPUTER METHODS IN BIOMECHANICS AND BIOMEDICAL ENGINEERING, 2011, 14 (08) : 695 - 705
  • [30] Development of a Ligamentous Finite Element Model of the Human Cervical Spine
    Tongprapai, Worakan
    Rattanapan, Nichapat
    Torudom, Yingyong
    Sukjamsri, Chamaiporn
    1ST NATIONAL BIOMEDICAL ENGINEERING CONFERENCE (NBEC 2021): ADVANCED TECHNOLOGY FOR MODERN HEALTHCARE, 2021, : 122 - 126