Development of a finite element biomechanical whole spine model for analyzing lumbar spine loads under caudocephalad acceleration

被引:3
|
作者
Goertz, Alan R. [1 ,3 ]
Yang, King H. [1 ]
Viano, David C. [2 ]
机构
[1] Wayne State Univ, Bioengn Ctr, 818 W Hancock, Detroit, MI 48201 USA
[2] ProBiomechanica LLC, 265 Warrington Rd, Bloomfield Hills, MI 48304 USA
[3] SURVICE Engn Co, 4687 Millennium Dr, Belcamp, MD 21017 USA
来源
关键词
spine; vertebrae; simulation; human body model; ejection; under-body blast; IED; HUMAN THORACIC SPINE; CERVICAL-SPINE; MECHANICAL-PROPERTIES; STRUCTURAL-PROPERTIES; STRESS-ANALYSIS; HUMAN VERTEBRAE; FLEXION; VALIDATION; DIMENSIONS; EXTENSION;
D O I
10.1088/2057-1976/abc89a
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
Background: Spine injury risk due to military conflict is an ongoing concern among defense organizations throughout the world. A better understanding of spine biomechanics could assist in developing protection devices to reduce injuries caused by caudocephalad acceleration (+Gz) in under-body blasts (UBB). Although some finite element (FE) human models have demonstrated reasonable lumbar spine biofidelity, they were either partial spine models or not validated for UBB-type loading modes at the lumbar functional spinal unit (FSU) level, thus limiting their ability to analyze UBB-associated occupant kinematics. Methods: An FE functional representation of the human spine with simplified geometry was developed to study the lumbar spine responses under +Gz loading. Fifty-seven load curves obtained from post mortem human subject experiments were used to optimize the model. Results: The model was cumulatively validated for compression, flexion, extension, and anterior-, posterior-, and lateral-shears of the lumbar spine and flexion and extension of the cervical spine. The thoracic spine was optimized for flexion and compression. The cumulative CORrelation and Analysis (CORA) rating for the lumbar spine was 0.766 and the cervical spine was 0.818; both surpassed the 0.7 objective goal. The model's element size was confirmed as converged. Conclusions: An FE functional representation of the human spine was developed for +Gz lumbar load analysis. The lumbar and cervical spines were demonstrated to be quantitatively biofidelic to the FSU level for multi-directional loading and bending typically experienced in +Gz loading, filling the capability gap in current models.
引用
收藏
页数:16
相关论文
共 50 条
  • [1] Development and validation of lumbar spine finite element model
    Wiczenbach, Tomasz
    Pachocki, Lukasz
    Daszkiewicz, Karol
    Luczkiewicz, Piotr
    Witkowski, Wojciech
    PEERJ, 2023, 11
  • [2] A finite element model for predicting the biomechanical behaviour of the human lumbar spine
    Pitzen, T
    Geisler, F
    Matthis, D
    Müller-Storz, H
    Barbier, D
    Steudel, WI
    Feldges, A
    CONTROL ENGINEERING PRACTICE, 2002, 10 (01) : 83 - 90
  • [3] A finite element model for predicting the biomechanical behaviour of the human lumbar spine
    Pitzen, T
    Geisler, F
    Matthis, D
    Müller-Storz, H
    Caspar, W
    Ritz, R
    Steudel, WI
    MODELLING AND CONTROL IN BIOMEDICAL SYSTEMS 2000, 2000, : 19 - 22
  • [4] Development and Validation of a Whole Human Body Finite Element Model with Detailed Lumbar Spine
    Guo, Li-Xin
    Zhang, Chi
    WORLD NEUROSURGERY, 2022, 163 : E579 - E592
  • [5] Development and Validation of a Whole Human Body Finite Element Model with Detailed Lumbar Spine
    Guo, Li-Xin
    Zhang, Chi
    WORLD NEUROSURGERY, 2022, 163 : E579 - E592
  • [6] Biomechanical Effect of Graded Facetectomy on Asymmetrical Finite Element Model of the Lumbar Spine
    Erbulut, Deniz Ufuk
    TURKISH NEUROSURGERY, 2014, 24 (06) : 923 - 928
  • [7] A Finite Element Model Technique to Determine the Mechanical Response of a Lumbar Spine Segment Under Complex Loads
    Tsouknidas, Alexander
    Michailidis, Nikoalos
    Savvakis, Savvas
    Anagnostidis, Kleovoulos
    Bouzakis, Konstantinos-Dionysios
    Kapetanos, Georgios
    JOURNAL OF APPLIED BIOMECHANICS, 2012, 28 (04) : 448 - 456
  • [8] Lumbar spine finite element model for healthy subjects: development and validation
    Xu, Ming
    Yang, James
    Lieberman, Isador H.
    Haddas, Ram
    COMPUTER METHODS IN BIOMECHANICS AND BIOMEDICAL ENGINEERING, 2017, 20 (01) : 1 - 15
  • [9] Biomechanical effects of metastasis in the osteoporotic lumbar spine: A Finite Element Analysis
    Salvatore, Giuseppe
    Berton, Alessandra
    Giambini, Hugo
    Ciuffreda, Mauro
    Florio, Pino
    Longo, Umile Giuseppe
    Denaro, Vincenzo
    Thoreson, Andrew
    An, Kai-Nan
    BMC MUSCULOSKELETAL DISORDERS, 2018, 19
  • [10] Biomechanical effects of metastasis in the osteoporotic lumbar spine: A Finite Element Analysis
    Giuseppe Salvatore
    Alessandra Berton
    Hugo Giambini
    Mauro Ciuffreda
    Pino Florio
    Umile Giuseppe Longo
    Vincenzo Denaro
    Andrew Thoreson
    Kai-Nan An
    BMC Musculoskeletal Disorders, 19